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Abstract
Adversarial attacks introduce subtle perturbations to audio sig-
nals for causing automatic speaker verification (ASV) systems
to make mistakes. To address this challenge, adversarial purifi-
cation techniques have emerged, where diffusion models have
been proven effective. However, the latest development with the
diffusion models caused a negative effect that the audio gener-
ation quality is not high enough. Moreover, these approaches
tend to focus solely on audio features, while often neglecting
textual information. To overcome these limitations, we propose
a textual-driven adversarial purification (TDAP) framework,
which integrates diffusion models with pretrained large audio
language models for comprehensive defense. TDAP employs
textual data extracted from audio to guide the diffusion-based
purification process. Extensive experimental results show that
TDAP significantly enhances the defense robustness against ad-
versarial attacks.
Index Terms: Speaker verification, adversarial defense, large
language model, diffusion model, textual-driven purification

1. Introduction
Automatic speaker verification (ASV) systems are essential for
ensuring communication security and verifying personal iden-
tities [1]. However, the rapid advancement in adversarial at-
tacks [2] has made ASV systems increasingly vulnerable. Ad-
versarail attacks, which exploit the weaknesses of ASV sys-
tems, potentially lead to false acceptances or rejections and
compromise the system’s integrity. Although adversarial train-
ing is a common defense strategy, it often has difficulties in
dealing with new types of attacks [3]. To address this issue,
researchers have expanded the range of adversarial purifica-
tion techniques for ASV systems, which can be roughly cate-
gorized into the following five kinds: lossy preprocessing [4],
noise addition [5], denoising [6], filtering [7], and generative
approaches.

In recent years, researchers has applied various generative
models to purify adversarial voice samples, given their strong
ability in transforming and reconstructing data [8, 9, 10]. Par-
ticularly, diffusion models have received much attention for
their superior generative and reconstructive capabilities. How-
ever, existing studies have discovered some of their limita-
tions. For example, while diffusion-based adversarial purifica-
tion (DAP) [11] effectively purifies voice signals, the quality
of the generated audio may be poor. AudioPure [12] performs
well in addressing various adversarial attacks, however, it re-
lies solely on audio features, which overlooking the potential
advantages of integrating textual information.
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Figure 1: TDAP diagram: A pretrained speech LLM provides
text representations for adversarial audio inputs. Conditional
diffusion audio purification (CDAP) combines text information
to create purified audio through diffusion models. Red dashed
lines represent adversarial audio inputs, and green dashed lines
represent purified audio outputs.

This research introduces a novel defense framework, named
textual-driven adversarial purification (TDAP). The core idea of
TDAP is to utilize the advanced capabilities of diffusion prob-
abilistic models and audio-language models for audio purifica-
tion against adversarial attacks. Specifically, TDAP first uses
pretrained audio-language models to extract text from audio,
and then uses diffusion models to purify malicious noises from
the test audio given the text information. Unlike traditional
attack strategies that often overlook text information, the inte-
grated textual data in the generation process not only effectively
avoids the adversarial perturbations, but also improves the qual-
ity of the generated audio. Experimental results demonstrate the
robustness of TDAP against severe adversarial strategies and
non-Gaussian noise.

The structure of this paper is outlined as follows. Section 2
introduces the TDAP framework. Section 3 presents related
work. Experimental results and analysis are reported in Sec-
tion 4, and the paper is concluded in Section 5.

2. Methodology
2.1. TDAP Framework

Speaker verification is designed to determine whether a given
speech sample cames from the claimed speaker. The prevalent
ASV systems typically consist of a feature extraction phase, a
process for encoding speaker embeddings denoted by F (·), and
a function for assessing similarity represented by S(·). For a
genuine audio example x, the similarity score s between the
test utterance xt and the enrolled speech xe is computed as:

s = S(F (xe), F (xt)). (1)
However, attackers often add slight perturbations ϵ to the
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input speech signal to deceive ASV systems. To address this is-
sue, we introduce an adversarial purification model D(·), which
removes perturbations ϵ from adversarial voice x̃, ensuring the
output x̃′ retains the original speaker’s identity:

S
(
xe, x̃′) = S (xe, x) . (2)

This research presents the TDAP method, illustrated in Fig.
1, which integrates a diffusion-denoising process with textual
information to rehabilitate adversarial voice. Initially, noise
is introduced to the adversarial input. Then, a large language
model for speech (Speech LLM) is employed for text extrac-
tion, leveraging textual context to enhance the purification pro-
cess. Subsequently, the conditional diffusion audio purification
(CDAP) architecture and the purifying diffusion probabilistic
model (PDPM) are applied sequentially for comprehensive au-
dio purification. Finally, a denoising phase extracts a clean
audio signal x̃′. The aforementioned components will be pre-
sented in detail as follows.

2.2. Aud2Vec Process

Speech LLM

Please listen to the 
audio file below and 

have it transcribed.

My aunt was a 
very tall lady.

DV3

Embedding

Figure 2: The Aud2Vec design process: Adversarial au-
dio samples are input into Speech LLM, guided by prompt
words to generate specific semantic text information, which
is then encoded into embeddings by DeBERTaV3 (DV3).
The sample is from VoxCeleb1, specifically 00011.wav under
id10270/5r0dWxy17C8.

The design process of Aud2Vec is illustrated in Figure 2. In
the Aud2Vec process, we start by employing the Qwen-Audio-
Chat model [13] for text extraction from various audio sources.
This model combines an audio encoder with a comprehensive
language model, effectively translating audio content into text
descriptions through its multitask learning framework and in-
struction fine-tuning strategy. This process is clearly captured
by the equation T (c) = AQ(c, p), where T (c) represents the
extracted text, AQ stands for the Qwen-Audio-Chat model, c is
the input audio signal, and p are the prompts guiding text gen-
eration.

Following the above text extraction, we employ the De-
BERTaV3 model [14], a pretrained language model based on
the transformer architecture, to transform the text into seman-
tic vector representations. This text embedding process is de-
scribed by E(T (c)) = DV 3(T (c)), where E(T (c)) signifies
the text embedding, and DV 3 denotes the DeBERTaV3 model.

2.3. CDAP Architecture

The CDAP architecture, described in Figure 3, is structurally
similar to DiffWave [15]. It uses bidirectional dilated convolu-
tions (Bi-DilConv) to accelerate audio generation while main-
taining model complexity. The architecture consists of N resid-
ual layers divided into m blocks, each with n = N

m
layers.

These layers use a kernel size of 3 for Bi-DilConv and feature
dilation rates that exponentially increase within each block as
[1, 2, 4, ..., 2n−1]. The model incorporates skip connections to
enhance information flow and gradient propagation across lay-
ers and to the output.

CDAP differs from DiffWave in that it implements a con-
ditional diffusion mechanism. This mechanism enhances the
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Figure 3: The design framework of the CDAP model: Integrat-
ing spectrogram with convolutional self-attention and text with
DeBERTaV3, followed by linear projection for enhanced diffu-
sion model training.

purification effect by merging (i) the text features that are en-
coded into the embeddings through DeBERTaV3 with (ii) the
features extracted from the audio spectrogram through convolu-
tional self-attention. The combined information from both the
text and audio embeddings is then processed through a linear
projection head for producing the enhanced input, which is then
used for improving the training of the diffusion models in the
following subsection.

2.4. Purifying Diffusion Probabilistic Model

Our purifying diffusion model starts with noise-free data
qdata(x0) and systematically introduces Gaussian noise into
the audio signal. As depicted in Fig. 4, with the noisy in-
put y for the diffusion model, we apply the forward diffu-
sion process qcdiff(xt|x0, y) and the reverse purifying process
pcdiff(xt−1|xt, y), which are crucial for the generation and pu-
rification of the audio signal.
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Figure 4: Illustration of the purifying diffusion process.

2.4.1. Purifying Diffusion Processes

In the purifying diffusion process, the clean speech x0 and the
noisy speech y are smoothly combined using an interpolation
parameter mt, as shown by the solid arrows in Fig. 4. This
approach departs from the traditional Markov chain Gaussian
model q(xt|xt−1) through the adoption of a conditional diffu-
sion model q(xt|x0, y):

qcdiff(xt|x0, y) = N (xt; (1−mt)
√
ᾱtx0 +mt

√
ᾱty, δtI), (3)

where δt represents the variance and is given by δt = (1 −
ᾱt) −m2

t ᾱt, where ᾱt, similar to the variance in standard dif-
fusion [16], dictates the pace of the diffusion process. A linear
interpolation between the clean speech x0 and the noisy speech
y is used to determine the mean of xt. The interpolation ra-
tio mt, transitioning the mean from clean to noisy speech, in-
creases from m0 = 0 to mT ≈ 1. Here, T represents the final
time step in the diffusion process. The distribution qcdiff(xt|x0)
is derived by integrating over y in the product of qcdiff(xt|x0, y)
and py(y|x0), assuming n ∼ N (0, I).
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When this criterion is fulfilled, qcdiff(xt|x0) aligns with the
original diffusion model q(xt|x0). This refinement represents
an advancement of the standard diffusion probabilistic model.
In section 2.4.2, we will introduce a conditional reverse pro-
cess that allows the purifying diffusion model to incorporate the
original diffusion model within a broader framework.

2.4.2. Purifying Reverse Processes

The refined reverse diffusion process begins with xT which is a
variable derived from the noisy speech signal y:

pcdiff(xT |y) = N (xT ;
√
ᾱT y, δT I), (4)

where δT is the variance of xT under the conditional diffusion
model with mT = 1.

This method uses a Markov chain to sequentially infer each
prior state xt−1 from the current state xt and the noisy signal y,
as defined by:

pcdiff(xt−1|xt, y) = N (xt−1;µθ(xt, y, t), δ̃tI), (5)
where the term µθ(xt, y, t) represents the mean estimation for
the reverse process, and δ̃t will be detailed later. Through the
integration of noisy speech y into the reverse process, this en-
hancement refines the standard model’s prediction of xt−1.

The mean of the reverse step, µθ(xt, y, t), is determined
through an estimated noise ϵ and a weighted sum of xt, y, with
coefficients cxt, cyt, and cϵt:

µθ(xt, y, t) = cxtxt + cyty − cϵtϵθ(xt, y, t), (6)
where ϵθ(xt, y, t) is responsible for estimating a mixture of
non-Gaussian and Gaussian noise. These coefficients are de-
rived from the evidence lower bound (ELBO) optimization,
which is elaborated below.

c′ +

T∑
t=1

κ′
tEx0,ϵ,y

∥∥∥∥( mt

√
ᾱt√

1− ᾱt

(y − x0)

+

√
δt√

1− ᾱt

ϵ

)
− ϵθ(xt, y, t)

∥∥∥∥2

2

(7)

Incorporating constants c′ and κ′
t, ϵ represents the Gaussian

noise in xt. The model ϵθ is adept at estimating this specific
Gaussian noise ϵ within xt. This allows for a balanced and ac-
curate estimation of the reverse process, achieved by adjusting
the coefficients for y − x0 and ϵ to account for the noise in y
and its standard deviation.

The term δt|t−1 is derived from δt, and δ̃t corresponds to
the variance in pcdiff(xt−1 | xt, x0, y). The calculations are as
follows:

δt|t−1 = δt −
(

1−mt

1−mt−1

)2

αtδt−1, (8)

δ̃t =
δt|t−1 · δt

δt−1
. (9)

3. Related Works
3.1. Language-Audio Pretraining

Leveraging unified architectures for audio-text integration. Ap-
proaches like SpeechNet [17] and SpeechT5 [18] process a wide
range of audio and text using a single encoder-decoder frame-
work. With advancements like WavLM [19] and XLS-R [20],
the research direction has been improved in speech processing
and cross-lingual capabilities. Qwen-Audio-Chat [13] further
expands on this by enabling multi-turn dialogues and support-
ing diverse audio scenarios, demonstrating the adaptability of
pretraining models in audio-text convergence.

3.2. Adversarial Training

The pioneering work [21] takes adversarial training as a ro-
bust defense mechanism for neural networks against threats.
Although its effectiveness was well-established, its adaptabil-
ity and scalability were further enhanced by integrating prin-
ciples from metric learning [22] and self-supervised learning
paradigms [23]. However, the significant computational re-
quirements of adversarial training have led to investigations into
more efficient methodologies [24, 25].

3.3. Adversarial Purification

Generative models have become pioneers in the domain of ad-
versarial purification. Wu [26] was the first to use SSLM-
based reconstruction to reduce adversarial noise while retain-
ing essential information in genuine samples. Following this
work, Joshi [5] utilized VAE encoders [27] to align test data
with the real manifold’s latent posterior, which purifies adver-
sarial noise by regenerating inputs from hidden embeddings.
This approach, inspired by DefenseGAN [8] in computer vi-
sion, projects data onto a real data manifold for purification.

4. Experiments and Results
4.1. Experimental Setup

1) Dataset: For the initial pretraining phase, we used the clean
subsets of train.100, validation, and test of the LibriSpeech cor-
pus [28]. Building on this foundation, the VoxCeleb [29] dataset
plays a pivotal role in both the fine-tuning stage and the evalu-
ation of adversarial attacks and defenses. For fine-tuning, we
randomly selected 10 audio utterances per speaker from the
VoxCeleb1-dev subset and generate corresponding adversarial
examples. For evaluation, we sampled 1,000 trials randomly
from the VoxCeleb1-O metadata to assess the effectiveness of
our adversarial attack and defense mechanisms. Additionally,
the ASV system utilizes the entire VoxCeleb2 [30] dataset for
training.
2) Model Architecture and Training Recipe: The CDAP
model was configured with 30 residual layers, each of
which contains 64 residual channels, three dilation cycles
[1, 2, . . . , 512] with a kernel size set to 3. For the model’s ar-
chitecture, a batch size of 16 was utilized, with the text feature
dimension configured at 768, the Mel-spectrum dimension at
80, the noisy spectrum at 513, and a 1024-length window with
a 256-length shift.

In the training process, the step t was set to 50, and a linear
noise schedule was employed for CDAP, with the scaling of βt

ranging from [1×10−4, 0.05]. A fixed learning rate of 3×10−5

was applied for both pretraining (on clean Mel-spectrum) and
fine-tuning the model. The interpolation parameter was set as
mt =

√
(1− ᾱt)/

√
ᾱt to ensure a smooth interpolation from

m0 = 0 to mt ≈ 1. During inference, the parameter γ in
the fast sampling method was adjusted according to the vari-
ance sequence {0.0001, 0.001, 0.01, 0.05, 0.2, 0.5}. The model
was pretrained for 1.2 million iterations to ensure a robust ini-
tialization, and fine-tuning involved training for 2 to 3 epochs,
resulting in satisfactory performance.
3) Adversarial Attack: We employed PGD attacks [31] to gen-
erate adversarial examples using L∞ and L2 norms, with ε set
to 30 and 6400, respectively, and a common iteration step of 50
and step size α = 1 for both norms. To maintain the signal-to-
noise ratio (SNR) level between genuine examples and adver-
sarial examples (in this paper, SNR = 39dB), we further added
Gaussian white noise into the genuine examples.

529



Table 1: EER(%) of genuine and adversarial examples on victim ASV model with defense models: spatial smoothing, adding noise,
DAP, proposed TDAP, and N/A (no defense).

N/A Spatial smoothing [7] Adding noise [6] DAP [11] TDAP
Median Mean Gaussian σ=0.002 σ=0.005 σ=0.015 σ=0.02 σ=0.05

genuine 0.813 25.813 1.220 4.331 0.984 1.220 2.846 4.134 9.553 3.469 1.016
adv-PGD-L2 98.780 29.268 96.063 26.829 26.543 4.211 4.131 4.065 10.236 3.992 3.862
adv-PGD-L∞ 99.213 30.285 97.561 27.362 22.947 4.115 3.740 4.472 10.236 4.082 3.346

Table 2: Audio signal quality: Generation from PGD-L2 adver-
sarial examples and purification by defense models.

Defender STOI WB-PESQ SI-SDR CSQI

N/A 0.994 4.301 38.289 -

Median filter [7] 0.630 1.139 1.049 1.993
Adding Noise [6] 0.812 1.243 8.548 10.165

DAP[11] 0.746 1.144 5.860 7.441

TDAP(proposed) 0.930 2.962 10.239 13.585

Table 3: Audio signal quality: Generation from PGD-L∞ ad-
versarial examples and purification by defense models.

Defender STOI WB-PESQ SI-SDR CSQI

N/A 0.994 4.290 38.059 -

Median filter [7] 0.630 1.138 -14.741 -9.044
Adding Noise [6] 0.398 1.040 -11.476 -9.663

DAP[11] 0.746 1.148 5.667 7.252

TDAP(proposed) 0.931 2.960 10.271 13.749

4) Evaluation Metrics: We adopted the equal error rate (EER)
as our primary metric to assess the effectiveness of defense
mechanisms. For evaluating the quality of the reconstructed
audio signals, we employed three essential metrics: short-time
objective intelligibility (STOI), wideband perceptual evaluation
of speech quality (WB-PESQ) and scale-invariant signal-to-
distortion ratio (SI-SDR). These metrics measure audio clarity
and intelligibility, where higher values signify superior quality.
Furthermore, we introduce the composite speech quality index
(CSQI) to encapsulate both the purification effect and genera-
tion quality, calculated as follows:

CSQI =

N∑
i=1

Metrici × (1− EER) (10)

where N denotes the total count of evaluation metrics em-
ployed, and Metrici denotes the i-th metric. In this context,
the metrics include STOI, WB-PESQ and SI-SDR.
5) ASV System: The victim model for adversarial attacks in our
experiment is the ECAPA-TDNN [32], which features layers
with 512 convolutional channels. It takes AAMSoftmax [33]
(s = 32,m = 0.2) as the training objective and incorpo-
rates attentive statistical pooling. For feature standardization,
the model employs cepstral mean and variance normalization
(CMVN) while processing 80-dimensional LogFBank inputs
with a 25-ms window and a 10-ms step. Data augmentation
techniques include speed alteration, disturbance, and reverber-
ation. The similarity of embeddings is measured using cosine
distance.

4.2. Results and Analysis

This section presents the comprehensive evaluation results, fo-
cusing on the performance of various defense strategies for an
ASV model and the audio signal quality under different adver-
sarial attack scenarios.

Figure 5: Mel filter bank features of an audio signal from Vox-
Celeb1 (id10298-DWT9P35cXT4-00004) produced by compar-
ison defense methods.
4.2.1. Defense Strategy Evaluation on ASV Model

We compared the defense strategies, spatial smoothing [7],
noise addition [6], DAP [11], and our proposed TDAP, on their
impact of defending the target ASV model. As shown in Ta-
ble 1, for genuine samples, the EER is lowest at 0.984% when
adding noise with a standard deviation of σ = 0.002, indicating
that the ASV model is strong against subtle noise. For the ad-
versarial samples constrained by L2 and L∞ norms, the TDAP
method reduces the EER to 3.862% and 3.346%, respectively,
which outperforms the other defense methods.

4.2.2. Analysis of Audio Signal Quality

Tables 2 and 3 present the audio quality metrics for PGD-L2

and PGD-L∞ adversarial examples, along with their purifica-
tion by defense models. Without defense, audio quality remains
high. However, if the defense methods are used, the speech
quality drops significantly. For example, the median filter de-
fense shows the sharpest decline, while introducing noise into
the system enhances quality. Finally, the TDAP method outper-
forms the other defenses. It achieves the highest metric scores,
with the CSQI scores of 13.585 for the PGD-L2 attack and
13.749 for the PGD-L∞ attack, which proves its effectiveness
in purifying adversarial examples and preserving audio quality
simultaneously.

Figure 5 illustrates the mel filter bank features of an au-
dio signal purified by our TDAP method. From the figure, we
see that it highlights the superior ability of retaining the orig-
inal spectral characteristics, with a remarkable resemblance to
genuine audio.

5. Conclusion
Our study introduces the textual-driven adversarial purifica-
tion (TDAP) framework. It effectively enhances the audio de-
fense robustness against adversarial attacks by integrating the
pretrained diffusion models with the audio language models.
Leveraging audio and textual information, TDAP overcomes
the limitations of previous methods and offers a promising solu-
tion for both protecting audio data from adversarial threats and
maintaining high audio quality. Experimental results show that
TDAP method outperforms other purification methods.
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