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Abstract

The ICACG challenge Track 1 requires to generate the target
speaker audios with high naturalness under extremely limited
speaker dataset. To achieve this goal, we introduce a novel
text-to-speech synthesizer which disentangles the style and tim-
bre information in cascade approach. Firstly, an auto-regressive
large language model (LLM) is applied to complete the text-to-
token generation, which can capture the style information from
audio prompt in zero-shot mode. Subsequently, a variational
generator is used to reconstruct the mel-spectrogram in corre-
sponding to the target speaker timbre conditioned on speaker
embedding. Therefore, the final synthesized audio can not only
contain the timbre of the target speaker, but also achieve a high
degree of expressiveness by utilizing the capabilities of LLM.
Since large and diverse data is necessary for training, a novel
data processing pipeline is also proposed to process the col-
lected data. As a result, our system achieved great performance
in terms of expressive speech synthesis and ranked the first
place in ICAGC 2024 Track 1 over all five evaluation metrics:
3.89 Quality, 3.83 Similarity, 3.85 Emotion, 3.89 MOS(avg)
and 0.22 MOS (std).

Index Terms: text-to-speech, timbre disentanglement, data
processsing

1. Introduction

The inspirational and convincing audio generation challenge
2024 (ICAGC 2024) [1] aims to enhance the persuasiveness and
acceptability of synthesized audio, focusing on human align-
ment convincing and inspirational audio generation. The objec-
tive of Track 1 in challenge is to synthesize the audio with the
target speaker timbre and convincing emotions for different text
theme. The total number of target speakers is ten, and the total
audio length per speaker is less than 14.5 minutes. The given
test texts encompass themes from various domains, including
novel chapters, ancient Chinese poems, etc.

Due to the data limitation, the traditional text-to-speech
(TTS) systems [2, 3, 4] fail to support this task, because most
of them are trained on limited datasets recorded in studios and
rely on the speaker adaptation for unseen speakers. Recent ad-
vancements based on LLM models [5, 6, 7, 8, 9] have shown
remarkable performance in zero-shot TTS, which can clone a
timbre and prosody with just a few seconds of audio prompt.
As shown in Fig.1, speech is usually tokenized into discrete to-
kens [10, 11, 12, 13], which makes model more robust to the
noise and data quality. In such TTS system, the LLM model is
applied to accomplish the next-token prediction task. By lever-
aging large and diverse data as much as possible, LLM models
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are empowered of the strong in-context learning capabilities.
Besides, the diversity of the generated acoustic tokens can be
improved by using different sampling strategies during infer-
ence stage [5].

Speech Tokenizer ——> ‘f,’f

i . ——> LLMModel — > ~ — Token-based
H ) e Vocoder

Figure 1: An overview of LLM-based TTS model inference
pipeline. The blue circles represent speech tokens and yellow
squares represent text tokens. (1) The audio prompt is converted
to prompt tokens via speech tokenizer. (2) The LLM model auto-
gressively generates the speech tokens with condition of text and
speech. (3) The token-based vocoder reconstructs the waveform
given the intermediate token.

The first language model based TTS framework is VALLE
[5], which synthesizes the personalized speech with 3-second
enrolled recording as audio prompt. Then, VALLE-X [14] is
proposed for zero-shot cross-lingual TTS and zero-shot speech-
to-speech translation tasks. However, the monotonic associ-
ation between phoneme sequences and audio is aligned by
self-attention mechanism, which brings the pose robustness is-
sues such as typos, omissions and repetition. To solve this
problem, VALL-E R [15] introduces a phoneme monotonic
alignment strategy to strengthen the generation stability. The
series of VALLE-related works is completed based the au-
dio codes extracted from the direct waveforms. Differently,
XTTS [16] and Single-Codec [17] propose to employ the Vector
Quantised-Variational AutoEncoder (VQ-VAE) to encode the
mel-spectrogram into latent codes. BASETTS [18] discretizes
the features extracted from a WavLM Self-Supervised Learning
(SSL) [19] model to reconstruct the mel spectrogram. Specifi-
cally, BASETTS [18] also reveals that the large language mod-
els begin to demonstrate the “emergent abilities”, more natural
prosody on complex sentences, when trained on increasing vol-
ume of data.

Inspired by the success of LLM-based TTS models, we in-
troduce an expressive TTS synthesizer to solve the Track 1 chal-
lenge. The whole framework is a cascaded system. Firstly, the
LLM model predicts the speech tokens which are constructed
by multi-lingual Wav2Vec [20] with K-means. A variantional
autoencoder [21] as a voice conversion model is applied to gen-
erate the mel spectrogram from the speech tokens. Finally, the
HifiGAN vocoder [22] is used to synthesize a waveform with
the generated mel as input. To encourage the disentangement
between the timbre and style, our strategy is to limit the respon-
sibilities of the auto-regressive model to captures the phoneme
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Figure 2: An overview of the proposed LLM-based TTS model

contents, duration and prosody, while designating a separate
token-to-mel decoder with the reconstruction of speaker iden-
tity. Additionally, it’s worth noting that the performance of the
current LLM-based TTS models significantly degrades with the
reduction of training dataset volume. Thus, we also propose a
data processing pipeline to transform in-the-wild speech data
into high-quality training data with annotations for speech gen-
eration. In a conclusion, our contributions are mainly follows:

* A high effective data processing pipeline is designed,
which can process one hour of raw speech data ready
for model training in a few minutes.

¢ A LLM-based model is designed based on discreted SSL
features. In order to further improve the style migration
and high expressiveness of the synthesized audios, we
propose to sum the text tokens and speech tokens for
prompt part and design two loss functions for training.

¢ A variational generator is to applied to construct the
mel-spectrogram from speech tokens. To reconstruct the
speaker timbre, we incorporate the speaker embedding
into the VAE model. Actually, the variational model can
be directly used as a voice conversion model to convert
the speech tokens from other speaker audio to the mel-
spectrogram containing the target speaker timbre.

Our experimental results demonstrate the superiority of the
proposed LLM-based TTS model in expressive speech synthe-
sis. The rest of the paper details the whole system and experi-
ments.

2. Methods

Since the large and diverse dataset is foundational to the suc-
cess of LLM-based TTS model, we design a data processing
pipeline to process the in-the-wild speech audios. The proposed
model consists of three main stages, as shown in Fig. 2. Firstly
the auto-regressive transformer model generates the speech to-
kens conditioned on text prompt and audio prompt, which aims
to control the phonetic and prosodic information. Secondly, an
variantioal generator reconstructs the Mel spectrogram with tar-
get speaker timbre. Finally, a vocoder synthesizes a waveform.

2.1. Data processing

As illustrated in Fig.3, the whole data processing pipeline in-
cludes seven steps:

. Standarization: Since the collected data vary in encoding

formats and contain some bad data, all data are converted
to mono channel, 16bit and 16kHz audios as WAV files.
A unique name is generated for each audio based on its
source, style and so on. Bad data like empty audio, pure
noise are filtered.

. Speech Enhancement: A speech enhancement model in

waveform domain [23] is used to extract the cleaner hu-
man vocals and reduce the impact of noise. Then, the
enhanced speech is used to calculate the signal-to-noise
ratio (SNR). In addition, we employ the speech super-
resolution technique [24] to generate high-frequency
components for severely damaged audios.

. VAD Segment: Given the enhanced speech data, we use

an open-sourced voice active detection! (VAD) tool to
segment the audios. By merging the shorter segments
and splitting the long one, the final speech segments
range from 3 to 20 seconds.

. Speech Diarization: To ensure the speaker label of each

speech segment, we employ an open-source speaker di-
arization toolkit? to determine both the number of speak-
ers and the speaker assignments.

. Quality Filter: To ensure the quality of final speech, we

further employ data filtering methods. The speech seg-
ments with SNR lower than 15db and more than one
speaker are filterd.

. Audio Labeling: To understand audios, we apply the

emotion2vec [25] to determine the utterance-level emo-
tion. By finetuning the wavLM model [19], we classify
the gender and ages of voice in each audio. The vari-
ables like speaking rate, energy and pitch are estimated
following the open-source toolkit®.

. Transcriptions Normalization: Finally, we employ the

neural automatic speech recognition (ASR) model to
process the audios without transcriptions. In order to ob-
tain the accurate text transcriptions, two ASR models are
used. The audio files with similarity of two sets of tran-
scriptions greater than 80% are ultimately retrained. One
ASR system is FunASR [26], another is specialized in-
house developed system. Additionally, the punctuations
are further restored based on the recognized text results
and silence in the audio.
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Figure 3: The diagram of the proposed data preprocessing pipeline

In general, the resulting pipeline can process 1.0 hours of
raw speech data in one minute using an independent server with
eight NVIDIA RTX A100 GPUs.

2.2. Discrete speech representations

In LLM-based model, it is foundational to seek an appropriate
discrete representation for speech tokenization and reconstruc-
tion. In this work, we aim to develop the speech tokens that
contain the phonetic and style information, which are disentan-
gled from speaker identity.

Thus, the waveform are passed into the multi-lingual
Wav2Vec [20] to extract the hidden states of the fifteenth layer.
Then, a K-Means model is trained in these features to obtain
a discrete speech tokens. The representations are compressed
(550 bits/s) to allow more efficient auto-regressive modeling
compared to popular audio codes (e.g. 6k bits/s in [12]]). With
this level of compression, we aim to remove the speaker-related
information from speech codes that can be reconstructed during
decoding to ensure that the capacity in speech codes is primarily
dedicated to encoding phonetic and style information.

2.3. Auto-regressive speech modeling

In LLM-based model, we formulate the TTS task as an
auto-regressive speech token generation problem. The auto-
regressive model structure is largely identical to the GPT-2 lan-
guage model [27], which is called as "GPT-Speech” in this
work. In the training stage, we randomly select a audio clip at
the beginning of a audio segment as the audio prompt. The text
tokens and speech tokens corresponding to the prompt part are
summed together instead of stacking into an embedding, which
can improve the expressiveness of synthesized speech. Both the
prompt tokens are encoded to a fixed size.

The GPT-Speech model is trained from scratch, without
pretraining on text. Furthermore, we design two loss functions
for training . First, the GPT-Speech model is trained to generate
the speech tokens corresponding to the remaining part of au-
dio segment. Besides, in order to retrain the textual information
to guide prosody, we also train the GPT-Speech model with an
objective to predict the text tokens for the whole segment.

2.4. Waveform generation

We first use a VAE generator [21] to reconstruct the mel-
spectrogram from the speech tokens. To ensure the speaker
identity, speaker embedding is extracted by the open-source tool
Resemblyzer? so that the mel-spectrogram obtain the timbre of
target speaker. Actually, the VAE generator can be considers as
a separate voice conversion model. It primarily consists of two
parts. First, the speech tokens are passed through an encoder

Uhttps://github.com/wiseman/py-webrtcvad
Zhttps://huggingface.co/pyannote/speaker-diarization-3.1
3https://github.com/huggingface/dataspeech

composed of transformers, which aims to convert the origi-
nal discrete representations into continuous, high-dimensional,
context-aware representations. Simultaneously, the speaker in-
formation is used as an input to guide the timbre. Then, the
obtained representations are processed by a Flow-VAE decoder
(FVAE).

The FVAE consists of three components: the encoder, the
decoder, and a flow model. Both the encoder and decoder
are mainly built on convolutional layers. Meanwhile, the flow
model incorporates multiple invertible transformations, notably
Coupling Layers, to achieve precise density estimation and
sampling within the latent space. During training, the model is
optimized to minimize reconstruction loss and Kullback-Leibler
(KL) divergence, ensuring that the generated features closely
align with labels and maintain structured latent representations.

HifiGAN [22] comprises a generator, multi-period discrim-
inators, and multi-scale discriminators, which is used to pro-
duce high-quality speech waveforms. The training process of
generator involves a combination of adversarial loss and recon-
struction loss. The discriminators are optimized using a binary
cross-entropy loss to improve the classification accuracy.

3. Experiments
3.1. Dataset

Leveraging the proposed data processing pipeline, we construct
a multilingual dataset of a collection of speech data from a
wide range of video platforms and podcasts, containing di-
verse speaking styles of real human speech. The total collected
dataset contains over 95k hours of speech data at 16kHz and
mainly covers over two languages: Chinese and English.

3.2. Training and hyperparameters

The three main modules, auto-regressive transformer, VAE
generator and vocoder, are trained separately. A pre-trained
checkpoint® is used for Wav2vec model. The codebook size
is 2048 for the speech tokens and a vocabulary size is 14319.
We train a 24-layer decoder-only transformer on our inter-
nal datasets for 90k steps with 8§ A100-40G GPUs. The
ScaledAdam optimization is used with max learning rate of
0.025 and warmup steps of 200.

The encoder and decoder of VAE generator is built on 8
convolutions and 4 convolutions respectively, which is trained
with the learning rate of 2.0e-4. The HiFiGAN is trained with
adjusted dilation sizes within the residual blocks set to [[1, 3,
51,[1,3,5],[1,3,5]] and a convolutional kernel size of [3,7,11].

“https://github.com/resemble-ai/Resemblyzer
Shttps://huggingface.co/facebook/wav2vec2-large-xlsr-53
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Table 1: The evaluation results of top-5 systems on the blind test-set in Track 1 challenge

Rank Team Quality Similarity Emotion MOS(avg) MOS(std)
1 Our team 3.89 3.83 3.85 3.86 0.22
2 NPU 3.84 3.48 3.58 3.63 0.30
3 zyzx_ai 3.67 3.50 3.50 3.56 0.42
4 PeitangTTSer 3.64 3.52 3.28 3.48 0.39
5 Happy Happy 3.33 345 3.33 3.37 0.36
3.3. Results 9.5
3.3.1. Evaluations on Generation Quality 9 - 8.754 8.837 g 765
We compare the proposed model with other three industry 8
TTS system, iFlytek®, Unisound” and fastpitch [28]. The au- 8
dios generated by iFlytek is from the ”vcn.x4 lingfeizhe_oral” T 7:5277.498 7577 e
voice from iFlytekSpark model. The voice for Unisound is ’
”chenyang-normal-plus”. For our proposed method, the audios /
is generated by using a 38 seconds reference clip of a Chinese 6.5
male speaker. .
Two sets of test cases are constructed: one is 15 sentences Flytek GPT-Speech Unisound Fastpitch

with 1-50 words and another is 15 sentences within 50-100
words. The total duration of synthesized audios per system
ranges 10 minutes or so. For each test set, we organized 30
professional evaluators to score the audios synthesized by three
systems according to the rules shown in Table 2. The average
score of total evaluation results are show in Fig.4.

Table 2: Metric for evaluating the TTS system

Metric | Score  Weight
Pronunciation Accuracy 10 20%
Naturalness and Fluency 10 60%

Audio Quality 10 20%

Compared with other TTS models, the proposed framework
achieves comparable performance in terms of pronunciation ac-
curacy, naturalness and audio quality. The long text transcrip-
tion which exceeds 50 words makes little degradation in the per-
formance of audio synthesis for the proposed model. Addition-
ally, we observe that the scores of Unisound and Fastpitch have
a significant difference compared to iFlytek and the proposed
model. It is also demonstrates that the LLM-based TTS model
is able to achieve better performance than the traditional TTS
algorithms.

3.3.2. Evaluation on in-context Learning Synthesis

In terms of in-context learning synthesis, we compare the pro-
posed model with other TTS teams on the test set in Track 1
of ICAGC challenge. Through the experiments, we have found
that the GPT-Speech model can capture the style information for
unseen speaker without fine-tuning, but the variantional gener-
ator can extract the better timbre information by speaker adap-
tion. Thus, we adopt a data augment strategy to enlarge the
datasets.

First of all, all the provided data are classified by the cor-
responding style. Notably, only speakerl and speaker2 have
four and three distinct styles respectively, while the other speak-
ers have one single style. Subsequently, the degraded speech

Shttps://console.xfyun.cn/services/medd90fec
7https://ai.unisound.com/doc/

mword 0-50 m word 50-100

Figure 4: Comparison results with other TTS models in terms
of pronunciation accuracy, naturalness and audio quality

audios from speaker4 and speaker6 are processed by speech
super-resolution model [24] to restore the high-frequency com-
ponents. Then, all data are used to fine-tune the open-source
model® to generate the audios for each speaker. However, al-
though the synthesized audios maintain the timbre information,
there are many bad cases such as repetitions, omissions or even
pure noise. We have filterd out the low-quality audios, and fi-
nally audios per speaker amounts to approximately 1 hour. The
obtained audios are used to fine-tune the variantional generator
in the proposed algorithm.

Notably, due to the disentanglement between style and tim-
bre in the proposed model, we can use different reference audio
in LLM model and variantional generator. In detail, the audio
prompt used in LLM model can be selected by audio style in-
stead of timbre, while the reference audio for VAE model must
be selected from the target speaker audios. After obtaining all
the 16kHz generated audios from the proposed model, we also
use the super-resolution model [24] to get the 48k audios to fur-
ther improve the speech quality.

In the evaluation of the ICAGC challenge Track 1, we
achieved great speaker similarity with 3.83 score and high emo-
tional expressiveness with 3.85 score, which ranked the first
place. The Table 1 showed the metrics of top-5 teams on the
test-set in five evaluation metrics.

4. Conclusion

In this work, we introduced an expressive speech synthesizer for
ICAGC challenge Track 1. Experimental results have demon-
strated the state-of-the-art performance in generation quality
and in-context leanring for the proposed system.

8https://github.com/RVC-Boss/GPT-SoVITS
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