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ABSTRACT

Proxy-based approaches in deep metric learning have re-
cieved wide interest due to their efficient training process and
rapid network convergence in the past few years. However,
existing single-proxy methods aim to learn a common feature
representation for each class by assigning a separate proxy for
each class, which contradicts the inherent intra-class variance
of samples from the same class, impeding more fine-gained
similarity retrieval. In this paper, we propose a hierarchi-
cal multi-proxy method named dynamic main-proxy anchor
(DMA) to address this issue. The approach first assigns mul-
tiple sub-proxies to learn different intra-class features and
then utilizes a dynamically constructed main-proxy to handle
class-related characteristics. In addition, we propose a reg-
ularization method to ensure closeness between similar sub-
proxies and distance between dissimilar ones. Experimental
results on three widely-used datasets show the superiority of
the proposed DMA over the state-of-the-art methods in both
retrieval and clustering tasks.

Index Terms— deep metric learning, proxy-based loss,
multi-proxy, image retrieval

1. INTRODUCTION

Deep metric learning endeavors to train neural networks for a
discriminative embedding space, enabling effective similar-
ity estimation between samples. In this embedding space,
the samples sharing similar characteristics exhibit closer spa-
tial proximity, while the samples bearing dissimilar attributes
demonstrate distinct spatial separations. To that end, different
loss functions are designed to optimize the embedding space,
which can be divided into two categories: pair-based methods
and proxy-based methods.

The pair-based losses are constructed on the pairwise dis-
tances between data points in the embedding space. An ex-
emplary pair-based loss is the contrastive loss [1, 2], which
aims to minimize the distance between a pair of data samples
if their class labels are identical, while also seeking to maxi-
mize their separation if the class labels are different. Another

* Xiao-Lei Zhang is the corresponding author.

pair-based approach is the triplet method [3], which formu-
lates the comparison of three instances, namely the anchor,
a positive example, and a negative example. An essential
requirement is that the distance between the anchor and the
positive example should be smaller than the distance between
the anchor and the negative example, surpassing a predefined
margin. However, the majority of deep models are trained
using Stochastic Gradient Descent (SGD), which operates on
mini-batches of data during each iteration, therefore, the in-
formation contained within a mini-batch becomes inherently
limited in contrast to the complete original dataset. In order to
mitigate this issue, an efficacious sampling methodology must
be devised for generating the mini-batches, and then extract-
ing triplet constraints from them. Some pair-based sampling
strategies have been proposed for acquire constraint [4–6].
For example, [4] suggests sampling the semi-hard negative
examples. [5] employs the inclusion of all negative examples
falling within the margin for each positive pair. [6] introduces
distance weighted sampling, which involves sampling exam-
ples based on their distance from the anchor example.

Unlike pair-based methods, Proxy-based methods do not
focus on the sample-to-sample relation, and hence avoid in-
vestigating sophisticated sampling strategies. The ProxyNCA
loss [7] is one of the pioneering investigations that introduced
this paradigm. It considers proxies as clustering centers in
embedding space. It focuses on modeling the relationship
between data instances and the proxies, resulting in a con-
siderable reduction in computational load. The ProxyAnchor
loss [8] is an improvement of the ProxyNCA loss. It employs
a weighted optimization mechanism to adapt the intensity of
optimization according to the similarity between the sample
and the proxy. The Smooth ProxyAnchor loss [9] introduces
a confidence module to mitigate the impact of the noisy labels
in the data.

The above proxy-based methods use predefined represen-
tations to enforce discriminative representations on samples
from different classes. Nevertheless, the variability observed
in samples cannot solely be attributed to class attributes; it is
also influenced by latent features such as viewpoint, postures,
background, illumination, and other factors [10]. As a result,
it becomes imperative to establish a more discernible repre-
sentation that effectively captures differences beyond class-
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irrelevant characteristics, thereby facilitating more refined in-
stance retrieval.

To address the above issue, this study proposes a hierar-
chical multi-proxy method to enhance the generalization abil-
ity of the learned class-irrelevant features. Fundamentally, it
assigns multiple sub-proxies to each class for representing the
data distribution properly. Our main contributions are sum-
marized as follows:

• We propose a novel hierarchical multi-proxy loss called
dynamic main-proxy anchor (DMA) to handle both
class-relevant and class-irrelevant characteristics.

• We propose a regularization term to ensure the proxim-
ity between sub-proxies from the same class, and keep
the distance between sub-proxies from different class.

• We compare the proposed DMA with the state-of-the-
art methods. Experimental results verify the effective-
ness of the proposed method in both retrieval and clus-
tering.

2. PROPOSED METHOD

2.1. Review of Proxy-Anchor Loss

The Proxy-Anchor loss [8] assigns a proxy to each class and
then takes each proxy as an anchor, associating it with the
entire data in a batch. The loss is given by:

LPA =
1

|P+|
∑
p∈P+

log

1 +
∑
x∈χ+

p

e−α(xT p−δ)


+

1

|P |
∑
p∈P

log

1 +
∑
x∈χ−

p

eα(x
T p+δ)

,

(1)

where P denotes the set of all proxies and P+ indicates the set
of proxies in a batch; For each proxy p, the set of embedding
vectors X is partitioned into two subsets: X+

P and X−
P , which

represent the set of positive and negative embedding vectors
of p respectively; α is a scaling factor, and δ is a margin.

The Proxy-Anchor loss utilizes data-to-data relations dur-
ing training, which is able to provide the embedding networks
richer supervisory signals than other Proxy-based method.
However, the way of assigning only one proxy to each class
is difficult to capture intra-class features, which results in
poor performance on the datasets that have large intra-class
variances.

2.2. Dynamic Main-proxy Proxy-Anchor Loss

The proposed DMA method is designed to overcome the limit
of the Proxy-Anchor loss mentioned above. Specifically, as
shown in Fig. 1, it assigns multiple sub-proxies pk (∀k =
1, 2, . . . ,K) and one main-proxy pm to each class, where the

sub-proxies represent the intra-class variance, and the main-
proxy is served for the inter-class distinction. We describe
DMA in detail as follows.

Giving a data sample xi, the similarity s (xi, pk) between
xi and a sub-proxy pk of an arbitrary class can be calculated
as

s (xi, pk) = xT
i pk, (2)

where the subscript k denotes the intra-class variability. At
this point, it is not feasible to treat each sub-proxy as an an-
chor directly, because it cannot reflect the relationship be-
tween classes. Therefore, we construct the main-proxy pm
for each class by the weighted sum of the similarity scores
between the sub-proxies pk and xi. The similarity between
xi and the main-proxy pm of this class is formulated as

s (xi, pm) =
∑
k

wikx
T
i pk, (3)

where

wik =
exp

(
1
γx

T
i pk

)
∑

k exp
(

1
γx

T
i pk

) (4)

is normalized similarity factor, and γ is the temperature. From
Eq. (3) we can see that, the main-proxy is

pm =
∑
k

wikpk, (5)

which is depended by both the sub-proxies and the sample xi.
Finally, substitute Eq. (3) into Eq. (1), the proposed DMA
loss can be formulated as

Lm =
1∣∣P+
M

∣∣ ∑
pm∈P+

M

log

1 +
∑

xi∈χ+
pm

e−α(
∑

k wikx
T
i pk−δ)


+

1

|PM |
∑

pm∈PM

log

1 +
∑

xi∈χ−
pm

eα(
∑

k wikx
T
i pk+δ)

,

(6)

where PM and P+
M denote the set of all proxies and the set

of proxies in a batch respectively. The loss takes the main-
proxy as an anchor, and uses it together with a sample from
the same class to form a positive pair, and with a sample from
a different class to form a negative pair. This formulation en-
sures the embedding vectors with similar inter-class features
as close as possible in the embedding space.

From the above formulation, we can see that, unlike ex-
isting hierarchical structure method, such as [10], the main-
proxy in our method is constructed dynamically for each
sample, which not only explores the advantage of the Proxy-
Anchor loss, but also reduces the computational complexity
compared to [10].
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main-proxy

(a) (b) (c)

Fig. 1. Illustration of the proposed DMA loss. Different colors represent different intra-class features of one class. Solid circles
are data samples, while hollow circles are proxies. (a) The dynamic main-proxy is determined by all the sub-proxies s1-s3 and
weight factors w1-w3. (b) For intra-class feature “red”, as the weight factor w1 increases, the main-proxy moves closer to the
direction of sub-proxy s1. At this point, the main-proxy, as an anchor, will pull these samples closer to s1. (c) Similarly, the
main-proxy pulls the data samples with intra-class feature “yellow” to s2.

2.3. Regularization on Sub-proxies

The sub-proxies, which serve as local cluster centers in each
class, represent the intra-class variability. To ensure the prox-
imity between similar sub-proxies and the distance between
dissimilar ones, we apply a constraint on the sub-proxies.
Specifically, we regard each sub-proxy as a sample, and es-
tablish positive/negative pairs with the main-proxy anchors
from the same/different classes. To reduce the computational
complexity, we designate the main-proxy in the regularization
term as the center of all sub-proxies in the same class:

pm2 =
∑
k

µpk, (7)

where µ is a scalar. Similarly, the constraint can be formu-
lated as

Lp =
1∣∣P+
M2

∣∣ ∑
pm2∈P+

M2

log

1 +
∑

xi∈χ+
pm2

e−α(pT
k pm2−δ)


+

1

|PM2|
∑

pm2∈PM2

log

1 +
∑

xi∈χ−
pm2

eα(p
T
k pm2+δ)

.

(8)

Finally, the overall objective of DMA becomes

L = Lm + λLp, (9)

where λ > 0 is a trade-off hyper-parameter.

3. EXPERIMENTS

3.1. Datasets and Experiment Setting

We conducted experiments on three standard datasets. The
CUB-200-2011 (CUB) [11] dataset consists of 11,788 images

of 200 bird species. We used the first 100 classes for training
and the remaining 100 classes for testing. The Cars196 (Cars)
[12] dataset consists of 16185 images of 196 bird species.
We used the first 98 classes for training and the remaining 98
classes for testing. The Stanford Online Products (SOP) [5]
dataset consists of 120,053 images of 22,634 online products.
We used the first 11,318 classes for training and the remaining
11,316 classes for testing.

We leveraged the commonly used Resnet50 [13] model
pre-trained on ImageNet [14] as our backbone. All input im-
ages were resized to 224 × 224. The model was optimized
by Adam with 50 epochs. The batch size was set to 180. The
learning rate for the network parameters was set to 10−4 on
the CUB-200-2011 and Cars-196, and 6 × 10−4 on the SOP.
To accelerate convergence, the learning rate for proxies was
scaled up 100 times. The input batches were randomly sam-
pled during training. The number of sub-proxies N was set to
10 for the CUB-200-2011 and Cars-196, and 2 for the SOP.
The temperature γ was set to 0.1.

We conducted a broad comparison on the tasks of image
retrieval which is evaluated by the Recall@k metric [5], as
well as clustering which is evaluated by the Normalized Mu-
tual Information (NMI) [15] respectively.

3.2. Comparison with Other Methods

We compare the proposed method with two categories of
methods: classical deep metric learning methods [4, 7, 8, 16–
22] and some recently published methods [23–26].

Table 1 shows the results of the comparison methods on
image retrieval. From the table, we can see that the proposed
method achieves the top performance in various R@k met-
rics on all three datasets. Specifically, the proposed method
achieves the best scores on both the CUB and Cars datasets,
except for the R@2 on the Cars dataset, which is inferior only
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Table 1. Recall@K(%) performance on CUB, Cars and SOP in image retrieval. Some recent methods are marked by the
superscript “∗”. The top two methods are highlighted in red and blue colors, respectively.

Method CUB Cars SOP
R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100 R@1000

Triplet [4] 42.5 55 66.4 77.2 51.5 63.8 73.5 82.4 66.7 82.4 91.9 -
Npairs [16] 51.9 64.3 74.9 83.2 68.9 78.9 85.8 90.9 66.4 82.9 92.1 -

Angular Loss [17] 54.7 66.3 76.0 83.9 71.4 81.4 87.5 92.1 70.9 85.0 93.5 98.0
Proxy-NCA [7] 49.2 61.9 67.9 72.4 73.2 82.4 86.4 88.7 73.7 - - -

Normalized Softmax [18] 59.6 72.0 81.2 88.4 81.7 88.9 93.4 96.0 73.8 88.1 95.0 -
RLL-H [19] 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1 76.1 89.1 95.4 -

Multi-similarity [20] 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5 78.2 90.5 96.0 98.7
SoftTriple [21] 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9 78.3 90.3 95.9 -

Proxy Anchor [8] 68.4 79.2 86.8 91.6 86.1 91.7 94.5 96.9 79.1 90.8 96.2 98.7
Proxy-GML [22] 66.6 77.6 86.4 - 85.5 91.8 95.3 - 78.0 90.6 96.2 -
DANML∗ [23] 67.6 79.1 86.4 91.2 85.6 92.1 94.1 97.7 79.9 92.1 96.4 98.9

RS-Topnk-MS∗ [24] 67.8 78.7 86.8 92.1 85.2 90.9 94.5 96.9 79.0 91.3 96.8 -
MS + DAS∗ [25] 69.2 79.2 87.1 92.6 87.8 93.1 95.6 97.8 80.5 91.8 96.7 98.9

MHP + Proxy Anchor∗ [26] 69.8 79.8 87.1 92.1 87.4 92.5 95.4 97.7 79.7 91.2 96.4 98.9
DMA (ours) 70.3 80.4 87.7 92.8 88.2 93.0 95.8 97.8 80.4 91.8 96.8 98.9

Table 2. NMI performance on CUB, Cars and SOP in clus-
tering. The recent method is marked by the superscript “∗”.
The top two methods are highlighted in red and blue colors,
respectively.

Method NMI
CUB Cars SOP

Triplet [4] 55.3 53.4 89.5
Npairs [16] 60.2 62.7 87.9

Angular Loss [17] 66.1 63.2 88.6
Proxy-NCA [7] 59.5 64.9 90.6

Normalized Softmax [18] 66.2 70.5 89.8
RLL-H [19] 63.6 65.4 89.7
DCES [27] 69.6 70.3 90.2
MIC [28] 69.7 68.4 90.0

Proxy-GML [22] 69.8 72.4 90.2
MS + DAS∗ [25] 69.1 70.8 90.4

DMA (ours) 72.8 74.1 90.6

to MS+DAS [25]. The proposed method obtains the runner-
up performances in terms of R@1 and R@10 on the SOP,
falling behind methods MS+DAS [25] and DANML [23] re-
spectively. The main reason for this suboptimal performance
is that the dataset contains a large number of classes (11318
classes), and has a low intra-class variance (each class only
has an average of 5 images), which contradicts the benefits of
the multi-proxy strategy. However, the gap between them is
not obvious, and the proposed method can still be competitive
with the mainstream methods in R@100 and R@1000.

Table 2 lists the clustering results of the comparison
methods. From the table we see that, the proposed method
achieves the highest NMI in all three datasets. For exam-
ple, for CUB and Cars, the proposed method gets a score of
72.8 and 74.1, which is 3 percentage points (pp) and 1.7pp
better than the runner-up methods respectively. For SOP,
the proposed method achieves the best score of 90.6, which
is the same as Proxy-NCA [7] and is 0.2pp higher than the
runner-up method.

Table 3. Impact of regularization term
Datasets Lp R@1 R@2 R@4 R@8 NMI

CUB ✗ 69.5 79.7 87.2 92.5 72.2
✓ 70.3 80.4 87.7 92.8 72.8

Cars ✗ 87.5 92.7 95.4 97.5 73.3
✓ 88.2 93.0 95.8 97.8 74.1

3.3. Ablation Studies

To verify the effectiveness of the regularization term in the
proposed loss function, we conducted an ablation study on
CUB and Cars. Experimental results in Table 3 show that the
regularization term Lp can improve the overall performance
in both R@k and NMI metrics, which implies that it can reg-
ularize the global geometry among sub-proxies, thereby en-
abling the learning of more discriminative sub-proxies.

4. CONCLUSION

In this paper, we propose DMA loss to overcome the limi-
tations of traditional single-proxy methods in capturing the
intra-class features. The DMA is a hierarchical multi-proxy
structure which allocates multiple sub-proxies to acquire
diverse intra-class characteristics before employing the dy-
namically constructed main-proxy to handle class-related
attributes. The experiment results on CUB, Cars and SOP
demonstrate its superior performance to the state-of-the-art
methods in the tasks of image retrieval and clustering.
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