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Abstract
Speech dereverberation with ad-hoc microphone arrays

seems not studied sufficiently, particularly in the scenario where
the reverberation time is large. In this paper, we propose a novel
multi-channel U-Net model for speech dereverberation with ad-
hoc microphone arrays, where an attention module is integrated
into the model in an end-to-end training manner to do channel
selection and fusion. Specifically, we first train a single-channel
U-Net model. Then, we replicate the U-Net model to each chan-
nel. Finally, we train the attention module for aggregating the
information of the channels, where the parameters of the U-Net
model are fixed at this stage. To our knowledge, this is the first
work that U-Net was used for dereverberation with ad-hoc mi-
crophone arrays. We studied two attention mechanism, which
are the self-attention and graph-attention; moreover, we inte-
grated the attention module into either the bottleneck layer or
the output layer of the multi-channel U-Net, which results in
four implementations.

Experimental results demonstrate that the proposed method
achieves the state-of-the-art performance, and the attention
module is very important in channel selection and fusion for
improving the performance against long reverberation time.
Index Terms: Speech dereverberation, ad-hoc microphone ar-
rays, attention mechanism

1. Introduction
The reverberation of speech is the speech signal that reaches
a microphone after many reflections from obstacles, such as
walls. Reverberation degrades the clarity and comprehensibil-
ity of speech. It does great harm to intelligent speech systems,
such as speech recognition and speaker recognition. There-
fore, we need to do dereverberation. Dereverberation aims to
remove the reverberant component from the noisy speech sig-
nal at the microphone receiver, keeping only the direct speech
for applications. According to the number of microphones in
an array, the speech dereverberation approaches can be catego-
rized into single-channel-based and multi-channel-based ones.
Compared to the single-channel approaches, the multi-channel
methods are able to leverage abundant spatial information for
better performance [1, 2, 3], which is the focus of this paper.

Currently, one prevalent way of multi-channel dereverber-
ation is to integrate deep learning with the conventional hand-
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Figure 1: Single-channel dereverberation model.
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(a) Attention module integrated into the bottleneck layer
of the multi-channel U-Net Model.

1
2

C

Input

ST
FT

Encoder Output layer

SA
M

iS
TF

T Output

Decoder

M
ea

n-
po

ol
in

g

Sh
al

lo
w

  f
ea

t

(b) Attention module integrated into the output layer of
the multi-channel U-Net Model.

Figure 2: The proposed multi-channel U-Net architecture for
ad-hoc array speech dereverberation.

crafted models that are designed to mathematically simulate the
reverberation process, e.g. spatial filters [4]. For instance, the
DESNet architecture employs a deep neural network (DNN)-
based weighted prediction error (WPE) module for dereverber-
ation [5]. An alternative strategy is to employ DNN to calculate
the weights of a beamformer, such as the MC-CSM [6], EaB-
Net [7], PCG-AIID System [2], TPARN [8] and FasNet-TAC
[9]. The spatial patterns of the microphone array between the
training and test stages are consistent, which make the learned
beamforming weights applicable in the test stage.

However, the aforementioned methods were designed for
fixed microphone arrays, where all microphones are contained
in a single device. The way of grouping multiple distributed
devices into an ad-hoc network, which is named the ad-hoc mi-
crophone array, has received some attention beyond the conven-
tional fixed microphone arrays [10, 11, 12]. A core property of
the ad-hoc microphone array is that the devices can be placed
randomly and flexibly without having to know their positions.
However, this topic seems not developed sufficiently, particu-
larly on speech dereverberation. To our knowledge, existing
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works mostly focused on speech enhancement with limited re-
verberation time, e.g. no more than 0.6 second [13, 14, 15].
[13] presents a method for multi-channel speech enhancement
using graph neural networks. [14] presents the Tango algorithm,
which uses ad-hoc nodes to compute and transmit compressed
signals, and then uses both local and compressed signals to es-
timate the desired signal. [15] integrates traditional signal pro-
cessing techniques with deep neural networks to handle uncon-
strained microphone arrays with varying node numbers.

In this paper, we propose an end-to-end multi-channel U-
Net-based speech dereverberation method for ad-hoc micro-
phone arrays. The novelties of the proposed method lie in the
following respects. (i) It is, to our knowledge, the first U-Net-
based speech dereverberation model for ad-hoc microphone ar-
rays. The reason why we adopt U-Net is that U-Net has been
proven to be an effective model in single-channel speech dere-
verberation. (ii) An attention module, which is used to aggre-
gate information of the channels at the both time and spatial
dimensions, is integrated into the multi-channel U-Net model
smoothly, which leads to an end-to-end model. The attention
module is responsible for channel selection and fusion. (iii) We
have used two kinds of attention module for the information ag-
gregation, i.e. self-attention and graph-attention, and integrated
it either into the bottleneck layer of the multi-channel U-Net
model or the output layer, which results in four implementa-
tions of the proposed model.

Additionally, the proposed model doesn’t constrain the
number of channels or spatial pattern of an ad-hoc microphone
array, making it flexible in real-world scenarios. Extensive ex-
perimental results demonstrate the effectiveness of the proposed
model in challenging scenarios with long reverberation time.

2. Proposed method
2.1. Signal model

Suppose an ad-hoc microphone array contains C randomly dis-
tributed microphones. For the c-th microphone, given its cor-
responding room impulse response (RIR) hc(t) = hcd(t) +
hcr(t) where t denotes time, and hcd(t) and hcr(t) represent
the impulse response functions for direct sound and reverbera-
tion respectively. The reverberant speech signal at the micro-
phone can be described as:

yc(t) = s(t) ∗ hc(t) = s(t) ∗ hcd(t) + s(t) ∗ hcr(t)

= xc(t) + rc(t)
(1)

where ∗ represents the convolution operation, s(t) represents
the clean speech at the source point, yc(t) represents the rever-
berant speech, xc(t) denotes the direct sound at the c-th micro-
phone, and rc(t) denotes the reverberant noise of yc(t). Speech
dereverberation with ad-hoc microphone arrays is to get the di-
rect speech of any channel xc(t), which is an amplification of
the clean speech s(t).

2.2. Model architecture

The proposed method is an end-to-end multi-channel derever-
beration model. The novelties of the model lie in that (i) it gen-
eralizes a single-channel U-Net model [16] to the multi-channel
case for ad-hoc microphone arrays, and then (ii) integrates an
attention module into the multi-channel U-Net in an end-to-end
manner. The architecture of the proposed model is show in Fig-
ure 2. It is a method working in the time-frequency domain
where the magnitude spectrogram of short-time Fourier trans-
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Figure 4: Aggregation module based on graph attention

form (STFT) is used as the acoustic feature. The training of the
proposed model contains two-stages:

The first stage is to train a single-channel U-Net-based dere-
verberation model [16] as shown in Figure 1, which consists of
a shallow feat, an encoder, a decoder and a Spatial Attention
Module (SAM). See [16] for the details.

In the second stage, we replicate the single-channel model
in the first stage to each channel of the ad-hoc microphone ar-
ray, which yields a multi-channel U-Net model. Then, we add
an attention module, in the places of either at the bottleneck
layer in Figure 2(a) or the output layer in Figure 2(b), to learn
channel-invariant feature for all channels, and finally average
the dereverberant features of all channels which yields a single-
channel dereverberant speech. In this training stage, we keep
the parameters of the multi-channel U-Net models fixed, and fo-
cus on using the ad-hoc data to train the information-exchange
module only. We have developed two implementations of the
attention module: (i) SA-aggregation, which is a multi-head at-
tention module, and GAT-aggregation, which is based on the
graph attention mechanism. The two implementations are in-
troduced as follows.

2.3. Information aggregation based on self-attention

The self-attention mechanism aims to capture global dependen-
cies and has been successfully utilized in various deep learning
domains such as speech recognition [17] and speech separation
[18]. In our architecture, we incorporate the SA-aggregation
module to facilitate the fusion of inter-channel information by
learning temporal-spatial characteristics among different chan-
nels. Figure 3 demonstrates the architecture of the self-attention
module used in Figure 2. For the integrity of this paper, we de-
scribe the self-attention module as follows.

Given the input of the self-attention module, denoted as
Z = [Z0, · · · ,ZDt ] ∈ RC×Df×Dt , which is also the out-
put of the encoder or SAM. For the m-th attention head ∀m =
1, . . . ,M , the query (Qm

t ), key (Km
t ), and value (Vm

t ) sub-
spaces of dimension E are computed through convolution.
They are all in RC×dm , where dm = E/M , and M denotes
the number of attention heads. Subsequently, the output of is
computed as follows:

Hm
t = softmax

(
Qm

t · (Km
t )⊤√

dm

)
Vm

t (2)

618



Table 1: Experimental results of the single channel dereverber-
ation model [16]

STOI PESQ fwSegSNR

Reverberant speech 0.692 2.106 6.232
Single channel Unet 0.848 2.547 9.395

with Hm
t ∈ RC×dm . The outputs of all attention heads are:

Ft = Zt + concat
[
H1

t ,H
2
t , . . . ,H

M
t

]
W (3)

where W ∈ RE×Df is the weight matrix of the linear projec-
tion layer, and Ft ∈ RC×Df . To prevent gradient vanishing, a
residual connection is established.
2.4. Information aggregation based on graph attention

As shown in Figure 4, another information aggregation module
is the GAT-aggregation. GAT-aggregation uses a self-attention
method based on graph convolutional network (GCN) layers to
learn the attention weights for the channels of a graph. The
adjacent matrix A ∈ RC×C , constructed by the graph, enables
each channel to focus on other channels by utilizing its own
representation as the query. Here, we assume that all channels
are mutually correlated:

A[c,j] = 1, ∀c = 1, . . . , C, ∀j = 1, . . . , C (4)

Given the input of the GAT module, denoted as Zt, where
Zt ∈ RC×Df , for the m-th attention head, we initiate the pro-
cess by projecting into a dm dimensional space using learnable
parameters Wm

l ∈ RDf×dm and Wm
r ∈ RDf×dm . In this

context, we denote the query and key matrices as gm
l and gm

l .

gm
l = ZtW

m
l ,gm

r = ZtW
m
r (5)

The score for the query-key pair from channel c to channel j is
computed using the following formula:

Em[c, j] = α⊤LeakyReLU(concat(gm
lc ,g

m
rj)) (6)

am
cj =

exp (Em[c, j])∑
A[c,j]=1 exp (E

m[c, j])
(7)

where Em ∈ RC×C , and α ∈ R2dk is a learnable vector.
The softmax function is used to normalize the attention rat-
ings over all of the adjacent channels. The aggregated out-
put of channel c is represented by hm

c for the m-th head are:
hm
c =

∑C
j=1 a

m
cjg

m
rj .

The aggregated characteristics of all nodes are concate-
nated. Then, we obtain the output of the aggregation as follows:

Hm
t = [hm

1 , . . . ,hm
c , . . . ,hm

C ] (8)

Ft = Zt + concat[H1
t , . . . ,H

m
t , . . . ,HM

t ] (9)

3. Experiments
3.1. Datasets

We constructed a simulated LibriSIMU-reverb dataset from
Librispeech[22]. Specifically, we randomly selected 10000,
3000 and 2000 utterances from the ’train-clean-100’, ’dev-
clean’ and ’test-clean’ subsets of Librispeech respectively, as
the speech source for constructing the training, validation, and
test datasets respectively. For each utterance, we simulated a

room with its length randomly generated from a range of of
[12, 14] meters, width from [8, 10] meters, and height from
[3, 5] meters. The reverberation time T60 of the room was
randomly generated from a range of [0.2, 1.2] seconds. The
gpuRIR [23] was used to generate the room impulse response
function. The positions of the single speaker and a number of
microphones were sampled randomly within the room, where
the training data uses ad-hoc microphone arrays of 8 micro-
phones, while the number of microphones in the test data were
set to 4, 8, 12, and 16.

3.2. Experimental setup

When the attention module is at the bottleneck layer, we denote
the proposed method based on the SA-aggregation as UNet-
Bottleneck-SA, and the method based on GAT-aggregation as
UNet-Bottleneck-GAT. Similarly, when the attention module
is at the output layer, we denote the proposed methods as UNet-
Output-SA and UNet-Output-GAT respectively.

For each proposed model, the information aggregation
module contains two spatial-temporal blocks, each of which has
four attention heads. To train the proposed model, we first train
the single-channel U-Net dereverberation model [16] by 100
epochs with randomly selected single-channel data from the
training set of the LibriSIMU-reverb dataset. The best model
among the 100 epochs was selected to initialize the proposed
multi-channel U-Net model. The performance of the single-
channel dereverberation model are listed in Table 1. In the sec-
ond training stage, we trained the attention module by 100 train-
ing epochs with 8 randomly selected channels of each training
utterance. The batch size at the second stage was set to 3. We
used the short-time objective intelligibility (STOI) [24], percep-
tual evaluation of speech quality (PESQ) [25], and frequency-
weighted segmental signal-to-noise ratio (fwSegSNR) [26] to
evaluate the dereverberation performance.

3.3. Comparison methods

The comparison baselines are categorized into three classes.
The first class is a conventional signal processing method
weighted prediction error (WPE) [19], which is implemented
by the NARA-WPE algorithm, a highly recognized traditional
dereverberation method, without constraints on the number of
channels or array designs.

The second class is single-channel U-Net based methods.
(i) Oracle one-best: It first selects physically the nearest mi-
crophone to the speaker, under the assumption that the micro-
phone positions are known as a prior. Then, it uses the single-
channel U-Net to do dereverberation on the selected channel.
(ii) Beamforming [21]: It first uses the conventional delay-
and-sum algorithm to fuse all channels into a single channel,
where GCC-PHAT is used to estimate the time delay, and then
uses the single-channel U-Net to do dereverberation on the sin-
gle channel output. (iii) EV [20]: It chooses the microphone
whose received signal has the highest envelope variance among
all microphones, and then uses the single-channel U-Net to do
dereverberation.

The third class of comparison methods is multi-channel
deep learning methods for ad-hoc microphone arrays. (i)
FaSNet-TAC: It is a representative multi-channel speech sepa-
ration model for ad-hoc microphone arrays [9]. (ii) Mean pool-
ing: It assigns equal weights to the outputs of all channels in
the proposed multi-channel U-Net instead of using the attention
mechanism.
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Table 2: Results of the comparison methods on different numbers of microphones

Algorithm 8Mic 4Mic 12Mic 16Mic

STOI PESQ fwSegSNR STOI PESQ fwSegSNR STOI PESQ fwSegSNR STOI PESQ fwSegSNR

WPE [19] 0.758 2.264 7.704 0.736 2.191 6.928 0.775 2.323 8.326 0.786 2.364 8.643

Oracle one-best 0.867 2.543 9.362 0.865 2.436 9.070 0.869 2.559 9.468 0.872 2.588 9.214
EV [20] 0.854 2.524 9.299 0.855 2.527 9.319 0.848 2.567 10.079 0.851 2.518 9.258
Beamforming [21] 0.849 2.639 8.482 0.840 2.795 8.676 0.840 2.650 8.676 0.842 2.576 8.523

FaSNet-TAC [9] 0.787 2.285 8.528 0.785 2.282 8.508 0.789 2.285 8.529 0.789 2.286 8.532
Mean pooling 0.850 2.639 9.482 0.846 2.695 9.276 0.840 2.560 9.367 0.843 2.553 9.323

UNet-Bottleneck-SA 0.887 2.600 9.635 0.882 2.626 9.469 0.891 2.612 9.789 0.892 2.614 9.823
UNet-Bottleneck-GAT 0.888 2.599 9.643 0.879 2.571 9.619 0.888 2.606 10.072 0.889 2.608 10.104
UNet-Output-SA 0.888 2.610 9.536 0.883 2.597 9.371 0.891 2.622 9.687 0.893 2.626 9.799
UNet-Output-GAT 0.877 2.503 9.144 0.874 2.483 9.009 0.879 2.512 9.352 0.882 2.516 9.783

Table 3: Results of the comparison methods on the reverberant scenarios with different T60 values.

Algorithm
0.2s-0.4s 0.4s-0.6s 0.6s-0.8s 0.8s-1.0s 1.0s-1.2s

STOI PESQ fwSegSNR STOI PESQ fwSegSNR STOI PESQ fwSegSNR STOI PESQ fwSegSNR STOI PESQ fwSegSNR

Reverberant speech 0.831 2.672 8.884 0.718 2.119 6.561 0.658 1.903 5.547 0.595 1.714 4.565 0.551 1.590 3.821

WPE [19] 0.941 3.283 12.569 0.843 2.378 8.524 0.735 2.012 6.448 0.680 1.794 5.118 0.629 1.629 4.572

Oracle one-best 0.891 2.787 10.201 0.896 2.859 10.273 0.877 2.647 9.577 0.832 2.360 8.573 0.829 2.356 8.825
EV [20] 0.910 3.066 11.165 0.875 2.641 9.505 0.850 2.429 8.765 0.833 2.341 8.725 0.809 2.181 7.626
Beamforming [21] 0.917 2.988 11.780 0.848 2.353 8.537 0.775 2.077 6.814 0.722 1.857 6.134 0.674 1.677 4.929

FaSNet-TAC [9] 0.849 2.499 7.788 0.752 2.073 6.324 0.667 1.856 5.042 0.617 1.745 4.107 0.578 1.635 3.750
Mean pooling 0.918 2.426 11.188 0.862 2.532 9.234 0.827 2.186 8.023 0.814 2.053 7.562 0.786 1.875 7.021

UNet-Bottleneck-SA 0.928 3.158 12.083 0.903 2.724 9.941 0.879 2.551 9.143 0.865 2.421 9.112 0.842 2.290 8.139
UNet-Bottleneck-GAT 0.928 3.151 12.455 0.903 2.724 10.528 0.880 2.550 9.567 0.866 2.438 9.423 0.844 2.293 8.491
UNet-Output-SA 0.928 3.165 12.002 0.903 2.743 9.761 0.880 2.570 9.001 0.866 2.456 9.169 0.845 2.308 8.034
UNet-Output-GAT 0.915 3.134 12.162 0.894 2.707 10.289 0.871 2.546 9.455 0.857 2.444 9.141 0.839 2.302 8.491

3.4. Main results

Table 2 lists the performance of the comparison methods on
the LibriSIMU-reverb test set, where the test scenario “8Mic”
matches with the training data. From the result, we see that
the proposed methods achieve the best performance in terms of
STOI and fwSegSNR in all test scenarios, and perform slightly
worse than “beamforming” in terms of PESQ when the num-
ber of microphones is smaller than 16. The experiment found
that ’channel selection’ is of significant importance. Specifi-
cally, “oracle one-best” outperforms “EV” and “beamforming”
in terms of STOI and fwSegSNR, while “EV” behaves bet-
ter than “beamforming” where beamforming does not utilize
channel selection. Moreover, the proposed methods outperform
“mean pooling”, which also demonstrate the importance of the
attention module in channel selection and fusion.

We also see the strong generalization ability of the proposed
methods in mismatching test scenarios. Specifically, the results
on the mismatched test scenarios with 4, 12, and 16 micro-
phones behave similarly with those with the matched scenario
with 8 microphones.

Finally, we find that the four proposed variants behave sim-
ilarly. If we have to rank the four methods, “UNet-Bottleneck-
SA” and “UNet-Bottleneck-GAT” behave similarly and outper-
form the other two, which indicates that placing the attention
module in the bottleneck layer is better than the other choice,
and that the graph attention and self-attention behave similar.

3.5. Effects of reverberant time on performance

Table 3 lists the effects of different reverberant time on the per-
formance of the comparison methods. From the table, we see
that, the proposed methods outperform all comparison methods
in all evaluation metrics when the reverberant time is longer
than 0.4 second. The only case that the proposed methods per-
form worse than the conventional WPE is when the reverberant

time is shorter than 0.4 second. Comparing Table 2 with Table
3, we see that the reason why the average PESQ performance
of WPE is better than that of the proposed methods in Table 2 is
just caused by its outstanding performance in the scenario with
little reverberation.

We also observe that, when the reverberant time increases,
the performance of all comparison methods drop, however, the
decrease rates of the comparison methods are different. The
methods with channel selection, including “oracle one-best”,
“EV”, and the proposed methods, drop much slower than the
methods without a channel selection module. Particularly, when
the reverberant time is large, we see that (i) the channel selection
and weighted fusion demonstrates its exceptionally importance
in improving the performance, and (ii) the attention module is
very important when comparing the results of “mean pooling”
and the proposed methods.

4. Conclusion

In this paper, we have proposed a multi-channel U-Net model
for dereverberation with ad-hoc microphone arrays, where the
attention module was used to do channel selection and fusion.
The core novelty is that proposed method generalizes the single-
channel U-Net dereverberation model to ad-hoc microphone ar-
rays, which is to our knowledge the first U-Net based derever-
beration model for ad-hoc arrays. We also integrate the atten-
tion module into the multi-channel U-Net model in an end-to-
end training manner, where two variants of attention mechanism
was studied. The comparison results show that, the proposed
multi-channel U-Net model yields outstanding performance in
speech dereverberation with ad-hoc microphone arrays, and the
attention module is very important in channel selection and fu-
sion, particularly in the challenging scenarios with large rever-
berant time.
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