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Abstract

One of the state-of-the-art direction of arrival (DOA) estima-
tion techniques is formulated as a classification problem using
deep learning. However, it inherently suffers from quantization
errors during the classification formulation. This weakness is
further amplified in two-dimensional (2D) sound source local-
ization (SSL). To address this limitation in 2D SSL, this pa-
per aims to develop a quantization-error-free training objective,
named Unbiased Label Distribution (ULD), along with a corre-
sponding decoding scheme for the predicted distribution. The
key idea is to use multiple adjacent classes jointly to eliminate
quantization error. Experimental results show that the proposed
algorithm significantly breaks the quantization error limit when
the classification model achieves high accuracy. It also demon-
strates strong robustness in low signal-to-noise ratio, high re-
verberation, and far-field environments.

Index Terms: 2D sound source localization, soft label encod-
ing, decoding, quantization-error-free

1. Introduction

Sound source localization (SSL) is a technique that uses multi-
channel signals captured by microphone arrays to infer the
spatial coordinates of sound sources. This technology holds
promise across diverse applications, serving as an auxiliary tool
in contexts like human-robot interaction [1,2] and speech sepa-
ration [3,4], and target speaker extraction [5].

In the past, the main focus was on traditional array signal
processing methods [6-8]. In recent years, the infusion of deep
neural networks (DNNs) into SSL has gained prominence ow-
ing to their nonlinear capabilities. Notably, DNNs employing
classification as the output strategy exhibit enhanced resilience
to interference signals [9].

Typically, compact microphone arrays concentrate solely
on direction of arrival (DOA) estimation. Dissimilar from com-
pact microphone arrays, distributed microphone arrays show-
case the capacity to pinpoint Cartesian coordinates of sound
sources. Facilitated by wireless interconnections, these ar-
rays can significantly augment the processing efficiency for the
sound emanating from remote sources [10]. Such configura-
tions are commonly referred to as ad-hoc microphone arrays.

This paper mainly focuses on indoor localization. In a study
conducted by [11], the experimental setup entails the alignment
of room and microphone layouts during both training and test-
ing phases. They introduced an end-to-end model and presented
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three distinct labeling strategies designed for two-dimensional
(2D) SSL. Another approach is proposed by [12], advocating
a stage-wise SSL methodology. In this framework, each node
corresponds to a compact microphone array tasked with esti-
mating the DOA. The intersections of these DOA estimates are
subsequently clustered to ascertain the precise 2D positions of
the sound sources. An alternative perspective is offered by [13],
who introduce an end-to-end model distinct from that presented
by [11]. Notably, in their methodology, random alterations are
introduced to the room and microphone layout. Consequently,
this mandates the provision of positional information for each
microphone node to the deep neural network. Furthermore, [14]
leverages the network presented in [13] as a foundational back-
bone for its research.

Both [11] and [13] share a common methodology of parti-
tioning the room into multiple grids, as illustrated in Figure 1,
while employing a classification model. The conventional and
intuitive approach involves treating each grid as a distinct class
and utilizing one-hot encoding for labels. In this paradigm, the
grid housing the sound source is designated as 1, while others
are set to 0. The decoding process entails identifying the center
of the grid with the highest probability as the sound source loca-
tion. However, this method conspicuously manifests significant
quantization error. To reduce the quantization errors, [11] intro-
duced a method called Refined Grid. This method employs a
two-step localization process: the first step is to classify which
grid the sound source is in, and the second step is to perform re-
gression within the grid. Theoretically, this approach offers the
potential of eliminating quantization errors entirely. However,
its practical application requires equipping each grid with three
output neurons, which represent the presence of a sound source
and its x-axis and y-axis ratios. This approach significantly
increases the complexity of the models. On the one hand, its
implementation is complicated. On the other hand, in adverse
environments, the convergence of training may be challenging.

[15] introduced the Unbiased Label Distribution (ULD),
a quantization-error-free soft label tailored for azimuth DOA
estimation with compact microphone arrays. Inspired by this
work, we extend ULD for estimating 2D sound source coordi-
nates with ad-hoc microphone arrays. The proposed soft labels
serve as a plug-and-play alternative to conventional one-hot en-
coding. It maintains the simplicity of the one-hot codes where
one output neuron of the classification-based deep model corre-
sponds to a grid. Empirical results showcase that the proposed
algorithm markedly transcends the limitations of quantization
errors, especially in scenarios where the classification model
achieves a high level of accuracy. Furthermore, the algorithm
demonstrates robustness in challenging environments.
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Figure 1: The 2D plane of a room is divided.

2. Method
2.1. Label encoding

Taking the x-axis as an example, the y-axis follows the same
principles. Assuming the room has a length of L along the x-
axis with a resolution of I, each segmented unit length is [ =
L/1I. To account for the boundaries, the output space along the
x-axis is discretized into {0,1,..., (L — 1) -1, -1}.

Assuming the ground-truth position of a sound source is
denoted as p”, it can be classified into the x-th class where
x = p®/l. Tt is emphasized that x is a real number and not
necessarily an integer. It can be encoded using a 1D-ULD vec-
tor denoted as = {x;}_,. This vector can be formulated as
follows:

1 —deci(x), ifi=int(x)
z; = < deci(x), ifi=int(x)+1 , Vi=0,...,1

0, otherwise

ey

where deci(-) represents extracting the decimal portion, while
int(-) represents extracting the integer portion. Eq. (1) can
be intuitively understood as that two adjacent integers are em-
ployed to approximate a real number that lies between them.
This is in contrast to the One-hot that involves rounding a real
number to the nearest integer. As illustrated in Figure 1, the po-
sition of the speaker along the x-axis can be represented through
the approximation by the 4th and 5th classes.

The process described earlier can be interpreted as trans-
forming SSL into a probability prediction problem, where
the model’s output signifies the probability distribution of the
speaker’s presence along different axes. It is crucial to under-
score a fundamental aspect: the x-axis and y-axis are orthog-
onal. Consequently, from a probabilistic standpoint, the ULDs
along these two axes represent independent 1D edge probability
distributions. This independence allows us to easily derive the
2D-ULD we seek. Consequently, their multiplication results in
the ground-truth 2D joint probability distribution. The subse-
quent content delineates the algorithmic flow.

Reshaping y as an (I + 1) x 1 column vector and x as a
1 x (I + 1) row vector, we obtain:

y=|.|, ==[x0 x - ] 2
yr
The matrix multiplication of y and x results in a 2D-ULD ma-
trix:

Yoxo Yoxi -+ YoxrI
Yyixo Yyixrir - y1xr

P=1 : . : &)
Yrxo Yrxri Yyrrr

Each element in p represents the probability of the correspond-
ing grid having a sound source.

When implementing the aforementioned 2D-ULD, if the
DNN output is a 1D vector (for instance, a fully connected out-
put layer), the 2D-ULD can be reshaped into a 1D vector for
supervising the training of the DNN.

2.2. Decoding

Upon completing the training of the DNN model using ground-
truth label supervision, the decoding process for the DNN out-
put p also necessitates consideration of quantization errors.
Firstly, the DNN output needs to be reshaped into a (I 4+ 1) x
(I + 1) matrix. This matrix serves as the predicted 2D joint
distribution, denoted as p € RUFDXIHD), According to prob-
ability theory, it is straightforward to obtain the 1D marginal
distribution in the remaining direction by summing over indi-
vidual directions of the joint distribution. This process can be
formulated as follows:

I I
B=pu 9= p @)

where p;. represents the i-th row of p and p.; represents the
j-th column of p. After obtaining & and y, we can apply the
processing steps from the following Eq. (5) to derive refined
predicted source coordinates (p*, p¥).

If only the peak class is chosen for decoding the DNN out-
puts & and g, it is inevitable that quantization errors will still
arise. Taking the x-axis as an example, the y-axis follows the
same principles. Aligning with the aforementioned comple-
mentary concept, the proposed approach involves taking into
account multiple adjacent classes and executing a weighted ap-
proximation to refine p®. Here, the peak class is denoted as
k = argmax;{#}/_,. Subsequently, the weighted adjacent
decoding (WAD) can be formulated as follows:

o _ Zi:{l%—1,l%,ie+1} Ei xixl )

D e {he1,eir1y T

Specifically, if there is an out-of-bounds situation, i.e., when
i < 0ori> I, wesetZ; = 0. By substituting the ground-truth
distribution  from Eq. (1) as a predicted distribution & into
Eq. (5) for decoding, the process achieves a lossless reconstruc-
tion of p®. Therefore, this algorithmic procedure of the output
architecture is self-consistent.

3. Experiments
3.1. Datasets

We evaluate our method on both simulated and real-world
datasets. We employed the Pyroomacoustics module [16] to
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generate three sets of simulated datasets, progressively increas-
ing in localization difficulty, denoted as L-1, Ad-1, and Ad-
2, respectively. The source speech is sourced from the Lib-
riSpeech corpus [17], and the source noise is extracted from
an extensive noise set [18]. Specifically, the source speech for
the training, validation, and test sets is derived from train-clean-
360, dev-clean, and test-clean, respectively. The dimensions of
the simulated rooms maintain a fixed height of 4.2m, the micro-
phones are situated at a constant height of 0.9m, and the sources
are positioned at a fixed height of 0.95m.

The configurations for the L-1 dataset followed the setting
in [11], which is a simple single-source dataset. Specifically, all
speech segments share the same room with no echo or noise.
Two 4-channel linear arrays were placed along the left wall and
the bottom wall of the room. The speaker was randomly po-
sitioned throughout the room. Each segment is 160ms long.
The training, validation, and test sets of the dataset consist of
100,000, 5,000, and 5,000 segments, respectively.

The configurations for the Ad-1 and Ad-2 datasets were
slightly modified from [13], representing the single-source and
two-source scenarios, respectively. For each utterance in the
dataset, we generated a room with random dimensions between
[4,10]m in length and width. The reverberation time Teo was
randomly chosen in the range [0.2, 1.2]s. In the training set, the
signal-to-noise ratio (SNR) was randomly chosen in the range
[0, 50]dB, while in the validation and test sets, the SNR was
chosen in the range [10, 20]dB. For each utterance, its room has
30 microphone nodes, with only one microphone per node. The
room was divided into a 16 x 16 grid, where some grids were
randomly selected with each grid used to place either a micro-
phone or a speaker. Each utterance is 2s long. The training,
validation, and test sets of the dataset consist of 18,000, 1,800,
and 1,800 utterances, respectively.

We formulated two real-world datasets from Libri-adhoc40
[19], where most configurations are consistent with the Ad-1
dataset. These two datasets are referred to as Ad-rl and Ad-
12, representing single-source and two-source datasets, respec-
tively. The geometry of the real-world room has approximate
dimensions of 9.8 x 10.3 X 4.2m. The room’s Tgg is approxi-
mately 0.9s, with negligible presence of additive noise. For each
utterance, 30 out of the 40 microphone nodes are randomly se-
lected. The training, validation, and test sets contain 18,000,
1,800, and 2,468 utterances, respectively.

3.2. Comparison among different labels

We compared ULD with three different labels. It should be
noted that the first three baseline labels use a number of classes
Ix I, while ULD uses (I+1) x (I+1) to cover the boundaries.

* One-hot [13]: In conjunction with the utilization of
Cross Entropy loss, the peak class is selected for decod-

ing.

e Heat map (HM) [11]: In adherence to the loss function
and decoding specified in [11], the standard deviation of
the Gaussian distribution is likewise set to 0.1.

¢ Refined grid (RG) [11]: The replication of this follows
the loss function and decoding set in [11].

¢ Unbiased label distribution (ULD): In conjunction
with the utilization of Cross Entropy loss, the WAD is
selected for decoding.

3.3. Experimental settings

In our experiments, three neural networks served as the back-
bone networks. The model proposed by [11] was directly em-
ployed in experiments conducted on L-1. Meanwhile, the model
proposed by [13] was applied directly to experiments on Ad-1.
Notably, this network incorporates three fully-connected lay-
ers at the end. For experiments on Ad-2, the second layer was
substituted with two parallel Bi-directional Long Short-Term
Memory (BiLSTM) layers, featuring the same number of out-
put neurons. This modification aims at learning masks for sep-
arating mixed speech features, aligning with the implicit source
separation concept introduced in [20]. Given that the model
entails multiple outputs, training this network necessitates the
application of permutation invariant training (PIT) [21]. For ex-
periments on real-world datasets, the models can be pre-trained
on the simulated datasets and then fine-tuned on the real-world
training sets.

A sampling rate of 16 kHz, a window length of 512 sam-
ples, a hop length of 256 samples, a Hanning window, and 512
FFT points were used for extracting Short-Term Fourier Trans-
form (STFT) features. Notably, the real and imaginary parts of
the STFT were concatenated and then input into the DNN.

For the Ad-hoc dataset, the frame-level replication of the
one-hot coding of node positions from [13] was employed and
fed into the DNN. What sets this study apart is that when us-
ing different label codings, the input and output maintained the
same type of position coding.

Drawing inspiration from [22, 23], during training on the
Ad-hoc dataset, only 15 nodes were randomly selected for each
utterance in each epoch. This entails using fewer microphone
nodes during training compared to testing, contributing to an
enhanced generalization capability of the model.

The AdamW optimizer [24] was employed with a maxi-
mum of 50 training epochs. When conducting training on L-1,
the batch size was set to 128, while for other experiments it was
set to 32. For all experiments on simulated datasets, the learning
rate was initialized at 10™3 and reduced to 10™* if the valida-
tion loss did not decrease over 3 epochs. During the fine-tuning
stage, the learning rate was initialized at 10~*. Training was
terminated early if the model’s loss on the validation set did not
reduce for 10 epochs. The model with the minimum localiza-
tion error on the validation set was selected for test.

3.4. Evaluation metrics

Since all experiments are based on classification models, the
most common and intuitive metric is classification accuracy
(ACC), which can be described as follows:

acc
N

where N is the number of test speakers, and N?°° represents
the number of speakers whose predicted position are correctly
classified into their corresponding ground-truth grid.

The most intuitive metric for SSL is the mean absolute er-
ror (MAE) of the straight-line distance between the predicted
position and the ground-truth position, which can be described
as follows:

ACC(%) = % 100 ©®)

N
1
MAE(m) = + >4/ — 502 + (0 — )2 )
n=1

where (py,, py) represents the ground-truth coordinates of the
n-th speaker position.
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Table 1: The experimental results on the L-1 dataset, with a
uniform network output class count of 6 x 6.

QE One-hot HM RG ULD

ACC  100.00 96.50 96.74  92.00 96.72
MAE  0.381 0.384 0.453 0.104 0.031

Table 2: The experimental results on the Ad-1 dataset, where
“/” indicates cases where the model training did not converge
or was not feasible.

I 1 2 4 8 16
QE MAE 2705 1340 0.687 0.340 0.174
ACC / 90.77 81.66 63.20 38.08

One-hot  MAE / 1.395 0.765 0460 0.361
ACC / 8432 7421 4175 /
HM MAE / 1468 0.691 0.652 /
ACC / 9728 9172 7860 39.69
RG MAE / 0253 0221 0206 0.322

ACC 96.11 9038 83.66 71.15 56.20
ULD  MAE 0292 0270 0217 0202 0.193

In scenarios where a single utterance involves multiple
speakers, there exist various permutations between the pre-
dicted positions and the ground-truth positions. We select the
permutation that minimizes the total sum of MAE.

3.5. Main results

For all the results tables, QE refers to Quantization Error, rep-
resenting the MAE achieved on the test set when the one-hot
models attain 100% ACC.

In Table 1, the discernible trend is the exemplary per-
formance of the classification model in pristine environments,
yielding remarkably high ACC. Notably, in this context, the
constraints on one-hot encoding primarily stem from quanti-
zation errors. However, both RG and ULD notably transcend
these limitations. ULD emerges as the frontrunner, exhibiting
the most impressive performance by diminishing MAE by a re-
markable 91.93% in comparison to one-hot.

Table 2 illuminates a compelling relationship between res-
olution /, quantization error, and ACC. As resolution increases,
QE diminishes, albeit accompanied by a rapid surge in the num-
ber of classes, precipitating a notable decline in ACC. Notably,
as [ attains a value of 32, models fail to converge. This im-
pediment curtails the efficacy of one-hot, resulting in a MAE
plateauing at a modest 0.361m. RG and ULD, functioning as
representations of microphone spatial features, surpass one-hot
in precision, achieving superior ACC for identical / values. RG,
endowed with I? classes, slightly outpaces ULD at lower I val-
ues. However, the imposition of 372 output neurons for RG,
when used as a label, yields a marked decrease in ACC as [ es-
calates from 8 to 16. Both methodologies, nonetheless, notably
surmount quantization error constraints, with ULD showcasing
supremacy by reducing MAE by 46.54% relative to one-hot.

Table 3 elucidates the impact of implicit separation on
model performance. One-hot closely approximates single-
source scenarios, while the intricate implementation and aug-
mented complexity of the loss function combined with PIT ren-
der RG significantly less accurate than one-hot. Despite RG’s
conceptual regression within correctly classified grids, its heavy
reliance on high ACC results in suboptimal performance. Con-

Table 3: The experimental results on the Ad-2 dataset, where
“/” indicates cases where the model training did not converge
or was not feasible.

1 1 2 4 8 16
QE MAE 2.695 1346 0.664 0.339 0.170
ACC / 91.14 7881 6139 3198

One-hot  MAE / 1401 0775 0507 0435
ACC / 78.61 6494 40.25 /
HM MAE / 1713 1.097 1.222 /
ACC / 7036 55.64 4247 17.05
RG MAE / 1499 1725 1.862 1.948

ACC 8875 7744 6675 5739 41.83
ULD  MAE 1018 0650 0462 0331 0.289

Table 4: The experimental results on the real-world datasets,
where “/” indicates cases where the model training did not con-
verge or was not feasible.

1 1 2 4 8 16
Dataset QE MAE 4312 1.796 0.720 0.651 0.289

ACC / 90.97 89.99 80.80 75.44
One-hot  MAE / 1.908 0755 0.687 0.351

Ad-rl ACC 9992 8633 5827 81.13 74.63
ULD  MAE 0445 0305 0234 0.180 0.207

ACC / 88.55 71.89 62.99 47.00
One-hot  MAE / 1951 1.078 0.946 0.729

Adr2 ACC 9137 7251 1829 59.54 57.05
ULD  MAE 1354 1.199 0.881 0.540 0.385

versely, ULD, akin to a refined iteration of one-hot with minor
modifications, inherits the ease of training advantages, leading
to comparable performance in both single and multi-source sce-
narios. Across diverse resolutions, ULD consistently achieves
smaller MAE:s relative to one-hot, maintaining a substantial ad-
vantage in mitigating quantization errors and reducing MAE by
33.56% compared to one-hot.

Table 4 presents the results on real-world datasets. As can
be seen, the experimental results are consistent with those on the
simulated datasets. ULD significantly overcomes the quantiza-
tion error limitations at high ACC. In single-source and two-
source scenarios, it reduces the relative error by 48.72% and
47.19%, respectively, compared to one-hot paradigm.

4. Conclusion

In this paper, we introduce a novel labeling algorithm tailored
for indoor 2D sound source localization. This algorithm not
only surpasses the limitations of one-hot encoding but also re-
tains its inherent ease of implementation. Starting with a one-
dimensional unbiased label distribution, we systematically ex-
pand it into a two-dimensional joint distribution to serve as the
ground-truth label for supervising DNN training. This approach
involves decomposing the two-dimensional predicted distribu-
tion into two distinct one-dimensional probability distributions.
This strategy enables probabilistic weighted adjacent decod-
ing, thereby achieving a remarkably precise determination of
the sound source position. Empirical findings from our exper-
iments substantiate the efficacy of this algorithm, demonstrat-
ing a notable improvement in performance without increasing
model complexity.
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