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Abstract—Multi-dimensional speaker localization (SL) aims to
estimate the two- or three-dimensional locations of speakers. A
recent advancement in multi-dimensional SL is the end-to-end
deep neural networks (DNNs) with ad-hoc microphone arrays.
This method transforms the SL problem into a classification prob-
lem, i.e. a problem of identifying the grids where speakers are
located. However, the classification formulation has two closely
connected weaknesses. Firstly, this approach introduces quanti-
zation error, which needs a large number of grids to mitigate the
error. However, increasing the number of grids leads to the curse
of dimensionality. To address the problems, we propose an efficient
multi-dimensional SL algorithm, which has the following three
novel contributions. First, we decouple the high-dimensional grid
partitioning into axis partitioning, which substantially mitigates the
curse-of-dimensionality. Particularly, for the multi-speaker local-
ization problem, we employ a separator to circumvent the per-
mutation ambiguity of the axis partitioning in the inference stage.
Second, we introduce a comprehensive unbiased label distribution
scheme to further eliminate quantization errors. Finally, a set of
data augmentation techniques are proposed, including coordinate
transformation, stochastic node selection, and mixed training, to
alleviate overfitting and sample imbalance problems. The proposed
methods were evaluated on both simulated and real-world data, and
the experimental results confirm the effectiveness.

Index Terms—Multi-dimensional speaker localization, ad-hoc
microphone arrays, axis partitioning, unbiased label distribution,
data augmentation.
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I. INTRODUCTION

S PEAKER Localization (SL) is a technology that estimates
the positions of speakers using signals captured by micro-

phones [1]. It has many important applications, e.g. directional
speech recognition [2], speech separation [3], target speaker
extraction [4], speaker diarization [5], [6], etc.

A. Motivation and Challenges

The SL research originated from array signal processing
techniques [7], [8], [9], [10], [11], [12], [13], [14]. Recently,
researchers have shown increasingly interests in methods based
on deep neural networks (DNNs) [1]. DNN-based models have
proven effective in direction of arrival (DOA) estimation, show-
ing strong performance even in noisy, reverberant environments
and with multiple speakers [15], [16], [17], [18], [19], [20].
In contrast, multi-dimensional localization involves pinpointing
the coordinates of speakers, which is more challenging.

DNN-based two-dimensional (2D) localization can be traced
back to [21]. In their design, the output layer comprises only two
neurons with the output ranging in [0, 1]. These neurons estimate
coordinates on the horizontal plane, representing scaling factors
for the room dimensions. This can be viewed as a regression
problem. [22] adopts this strategy but adds an additional neuron
to detect source activity. In contrast, [23], [24] subdivide the
horizontal plane of a room into multiple grids, implementing
classification for localization. Likewise, [25], [26] divide a room
into multiple cubic blocks, enabling three-dimensional (3D)
localization. In [27], the distributed array has two nodes, each
acting as a sub-array. The traditional algorithm for this setup
is a two-stage method: first, estimate the DOA for each node,
and then conduct triangulation across the nodes. The authors
proposed two end-to-end models which stack the embedding
features of the nodes. It outperforms the triangulation of the
separate DOAs. All the mentioned literature imposes strict
constraints on the array configuration, prohibiting any changes
in microphone positions or quantities from the training to the
testing phase. We refer this setup as fixed distributed microphone
arrays.

In contrast, ad-hoc microphone arrays are another type of
distributed array with nodes placed randomly. When combined
with deep learning, the number of nodes in these arrays can vary
during both training and testing, offering flexibility in real-world
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applications [28]. However, clock synchronization in distributed
microphone arrays remains a significant challenge. Most ex-
isting studies assume that the nodes are synchronized. [29],
[30] have made efforts to synchronize the microphone clock.
Researches on SL with ad-hoc microphone arrays have been
conducted in [31], [32], [33]. In [31], each node acts as a sub-
array. These nodes, in conjunction with DNNs, are employed
to generate DOA rays, and the intersections of these rays are
determined through clustering to obtain the final speaker loca-
tions. In the configurations described by [27], [31], each node is
a sub-array. The accompanying algorithms do not require time
delay information interaction between nodes, which makes the
asynchronicity between the nodes not an obstacle. [32] proposed
an end-to-end SL model, which formulates SL as a classifi-
cation problem. Unlike [23], their method introduces random
alterations to the room and microphone layout and provides
positional information of microphone nodes to the DNNs. This
enhances the model’s generalization ability to fundamentally
different layouts during the test stage. A similar setting was
adopted in [33] as well.

DNN-based SL models can be implemented through regres-
sion or classification. [34] notes that the classification-based
SL is limited by resolution, where we need to emphasize that
the word “resolution” refers to the number of classes that can
be divided along a single dimension (e.g., azimuth or x-axis),
and does not refer to the physical performance limits of an
array. [35] found that regression on Cartesian coordinates typi-
cally yields higher accuracy, while classification shows greater
robustness in challenging environments. [33] explains that the
errors in the classification-based approaches consist of quan-
tization errors and learning errors, where quantization errors
are particularly severe in 2D localization. Intuitively, in a one-
dimensional (1D) output space like DOA azimuth, improving
resolution and increasing the number of classes are linearly
related, making quantization error inversely proportional to the
number of classes. However, as the number of classes increases,
the model’s complexity, training time, and computational costs
also rise. With a large number of classes, sample imbalance
can occur, where some classes have too few samples, resulting
in poor learning performance for those classes. [36] proposed
Unbiased Label Distribution (ULD) to eliminate quantization
errors in classification-based azimuth DOA estimation. How-
ever, it is not suitable for multi-dimensional localization. In
multi-dimensional localization, the challenge intensifies as the
number of classes increases quadratically or cubically (2D or
3D) with improved resolution. This results in a marginal de-
crease in quantization error but a significant increase in learning
error. A large number of classes can hinder a classification
model’s convergence during training (i.e., training loss does
not decrease at all). The flexibility of ad-hoc arrays further
complicates training.

Another pressing issue is severe overfitting. Ideally, a dataset
should include a wide variety of microphone node locations
and speaker locations. However, collecting such data is time-
consuming and expensive. Therefore, SL tasks often rely on
training with simulated datasets. Since simulation and real-
world environments represent different domains, models trained

on simulated data may not perform well on real-world data due
to domain shift.

Take the example of Libri-adhoc40 [37]. This dataset com-
prises 40 nodes in an ad-hoc configuration, with a training set
of 100 hours per node. It has proven suitable for tasks like
far-field speech recognition [38], speaker verification [39], [40],
and speech separation [41]. However, its training set includes
data from only 9 different speaker positions, as changing speaker
positions for each recording is challenging, unlike in simula-
tions. From the perspective of SL, this represents a severe case
of sample imbalance. If one were to follow the same approach as
in previous tasks, pre-training on a simulation dataset first and
then fine-tuning on the real-world dataset, it would likely lead to
rapid overfitting. This makes fine-tuning on the real-world data
unsatisfactory.

B. Goals and Contributions

To summarize the previous section, we aim to address the
following critical challenges: (i) Grid partitioning encounters
the curse of dimensionality, while conducting localization in-
dependently along each axis introduces permutation ambiguity
in multi-speaker scenarios. (ii) The one-hot classification-based
SL paradigm inevitably suffers quantization errors, even with
classification accuracy reaches 100%. (iii) Severe overfitting
exacerbates the difficulty of the problem. Our solutions to these
challenges offer the following novel contributions:
� We propose decoupling the output space to address the

curse of dimensionality: This approach, named axis par-
titioning, is intuitive because the coordinate axes are or-
thogonal. For multi-speaker localization, we suggest using
an implicit separator to avoid the permutation ambiguity
encountered in the axis-partitioning-based SL. The separa-
tor shifts the permutation ambiguity from the test phase to
the training phase, rendering it a problem with established
solutions.

� We introduce soft labels to address quantization errors:
Quantization errors can occur both in the encoding stage
of labels and the decoding stage of predicted distributions.
To address this, we propose an extension for ULD to handle
multi-dimensional localization.

� We propose a set of data augmentations to mitigate over-
fitting: First, we introduce Coordinate Transformation and
Stochastic Node Selection to mitigate overfitting during
all training stage. Secondly, to mitigate severe sample
imbalance during fine-tuning on real-world datasets, we
suggest using Mixed Training.

This paper is organized as follows. Section II introduces pre-
liminary concepts. Sections III-A and IV explore grid and axis
partitioning within the common one-hot classification paradigm.
Section V offers a comprehensive description of unbiased label
distributions, tailored to each partitioning method. Section VI
discusses data augmentation strategies. Section VII outlines our
experimental settings. SectionsVIII and IX present and analyze
experimental results on simulated and real-world datasets. Fi-
nally, Section X concludes current and future work.
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Fig. 1. Normalization process for room size.

Fig. 2. The 2D plane of a normalized room is evenly divided.

II. PRELIMINARIES

In this paper, we assume the dimensions of rooms are known.
Given a room characterized by dimensions l = {lx, ly, lz}, we
establish a Cartesian coordinate system with one corner of the
room as the origin, aligning the coordinate axes with the walls’
edges. Suppose a speaker is located at p = {px, py, pz}. To
formulate the SL task as a learning problem, we first normalize
the room to a size of {1, 1, 1} [21]. The SL task then involves
estimating the ground-truth scaling factors s = {sx, sy, sz} =
{px/lx, py/ly, pz/lz}, which lie in the range [0, 1]3. Subse-
quently, we recover the location from these predicted scaling
factors. The positions of speakers and microphones are scaled
using this method.

Fig. 1 illustrates the normalization process in a 2D scenario.
During the inference stage, we first generate predicted scaling
factors from DNNs. These scaling factors are then multiplied
by the corresponding room dimensions to estimate the speaker’s
location.

III. BACKGROUND: GRID PARTITIONING WITH ONE-HOT

CODES

A. Grid Partitioning

First, let us consider the case of 2D grid partitioning, noting
that the principle of 3D partitioning is fundamentally analogous.
As illustrated in Fig. 2, we uniformly divide the normalized room
into I × I grids, each labeled {0, 1, . . . , I2 − 1}, where I ∈ N
represents the resolution. The objective of classification is to

determine if the speaker is located within the i-th grid, with the
grid center representing its corresponding scaling factors. The
predicted 2D ŝi can be formalized as:

ŝi = {(i//I + 0.5)/I, (i%I + 0.5)/I} (1)

where “//” denotes the floor division operation, and “%” denotes
the modulo operation.

Similarly, we can derive the approach for 3D partition-
ing. We divide the room into I × I × I grids, each labeled
{0, 1, . . . , I3 − 1}. The predicted 3D ŝi can be formalized as:

ŝi = {(i//I//I+0.5)/I, (i//I%I+0.5)/I, (i%I2 + 0.5)/I}
(2)

One drawback of grid partitioning is the challenge of high
dimensionality. This makes it difficult to reduce training loss,
and the associated costs in training time and GPU memory
can be substantial. We assert that this approach results in
high-dimensional but exceedingly sparse label codings, adding
unnecessary training complexities. This sparsity affects not only
one-hot codes but also soft labels such as [23], [33], [36], [42],
[43].

B. Multi-Speaker Localization Based on Grid Partitioning

The advantage of grid partitioning is its ease in determining
the positions of multiple speakers. We introduce two methods
for multi-speaker localization based on grid partitioning:
� Multi-Label Classification (MLC): As shown in Fig. 3, we

assign a value of 1 to the grids containing speakers, and 0
otherwise [1].

� Separator: We decompose the multi-speaker localization
task into multiple single-label classification tasks, where
each speaker is assigned an independent label. To this end,
we combine the grid partitioning with the implicit separator
proposed in Section IV-B.

C. Quantization Errors of One-Hot Encoding and Decoding

The above grid partitioning method uses one-hot codes, which
suffers quantization errors in both the training and test stages. (i)
During training, quantization error arises when a real number is
converted to an integer for ground-truth label. (ii) During testing,
if the predicted factor is represented solely by the integer corre-
sponding to the highest class in the predicted code, quantization
error also inevitably exists.

IV. AXIS PARTITIONING WITH ONE-HOT CODES

A. Axis Partitioning

For simplicity, our discussion will focus on partitioning the
x-axis, though the same principles apply to the other axes. The
x-axis is uniformly divided into I classes, labeled {0, 1, . . . , I −
1}. The goal of classification is to determine if the speaker is
in the i-th class, with the center representing its corresponding
scaling factor. The predicted 1D ŝi can be formalized as:

ŝi = (i+ 0.5)/I (3)

Taking Fig. 2 as an example, we have I = 10 and the speaker
corresponds to i = 4.
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Fig. 3. The workflow of modeling multi-speaker localization as multi-label classification with gird partitioning.

Fig. 4. The incongruence between axis partitioning and multi-label classification becomes evident in scenarios involving multiple speakers, where permutation
ambiguity arise.

Fig. 5. After feature separation, the position of each speaker become distinctly discernible.

In the context of 3D localization, as described in Section III-A,
employing grid partitioning would require I3 output neurons of
a DNN. However, with axis partitioning, only I neurons are
needed to independently represent a position along each axis,
resulting in a total of just 3I output neurons. This approach
evidently enhances trainability and reduces computational costs.

B. Multi-Speaker Localization Based on Axis Partitioning

However, axis partitioning suffers from the limitation of not
easily inheriting the MLC capability. Specifically, consider the
two-speaker problem illustrated in Fig. 4. Using axis partition-
ing, one can efficiently determine the positions of the two speak-
ers along each individual axis. These positions can be denoted as
{s1x, s2x} and {s1y, s2y}, respectively. Note that these superscripts
are used solely for differentiation and do not indicate affiliation
with a particular speaker. There is no definitive criterion for
determining whether the positions of these two speakers should
be represented as {(s1x, s1y), (s2x, s2y)} or {(s1x, s2y), (s2x, s1y)}.

We propose using a separator, denoted as Sep(·), to resolve the
permutation ambiguity described above. Specifically, as shown
in Fig. 5, we denote the embedding feature of a sound mixed
from N speakers (N > 1) as E ∈ RT×D, where T represents
the number of frames, and D represents the dimension of the
embedding feature at each frame. Note that E comes after the
channel fusion module and therefore have no channel dimension.
Given that E is a feature mixed from multiple speakers, our
primary goal is to separate these individual features. Generally,
achieving separation requires temporal modeling capabilities.
In this paper, Sep(·) is implemented using Bidirectional Long
Short-Term Memory (BiLSTM) layers with sigmoid activation.
Our approach involves the extraction of ratio masks as follows:

{Wn}Nn=1 = Sep(E) (4)

where Wn ∈ [0, 1]T×D denotes the ratio mask of speaker n.
Subsequently, we can recover the embedding feature of speaker
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n by masking E with Wn:

en =

∑T
t=1 Wn � E∑T

t=1 Wn

(5)

where en ∈ RD represents the embedding feature of speaker n,
and � is the element-wise product operator. This information is
then processed through a predictor to obtain the predicted coding
ρ̂n of speaker n:

ρ̂n = Pred(en) (6)

where Pred(·) is composed of a linear layer with soft-
max activation. From ρ̂n, we can easily decode the unique
(sspkr−n

x , sspkr−n
y ). This indicates that the permutation ambi-

guity during the inference phase has been resolved.
However, training the network meets the permutation ambi-

guity as well. Fortunately, we could overcome this problem by
Permutation Invariant Training (PIT) [44]. Here we present PIT
briefly as follows:

LPIT = min
φ∈Φ

N∑
n=1

L(ρ̂φ(n),ρn), (7)

where ρn is the ground-truth label coding of speaker n, L
denotes a loss function,Φ is a set encompassing all permutations
of N speakers, and φ represents a single permutation with φ(n)
representing the n-th speaker in the corresponding permutation
φ.

V. SOFT LABEL ENCODING AND DECODING

To eliminate the quantization errors, in this section, we first
propose a novel soft label encoding and decoding strategy,
named unbiased label distribution (ULD), in Section V-A. Then,
we apply ULD to the grid partitioning method in Section V-B,
and axis partitioning method in Section V-C. The term “unbi-
ased” indicates that these labels are quantization-error-free. This
section focuses on the scenario of single-speaker localization,
while its generalization to the multi-speaker case is straightfor-
ward.

A. Unbiased Label Distribution

The ULD encoding-decoding strategy is built from a prob-
abilistic perspective. To ensure coverage up to the boundaries,
each axis is uniformly divided into I + 1 classes, represented as
{0, 1, . . . , I}, as shown in Fig. 2.

1) Soft Encoding in the Training Stage: In the training stage,
the ULD code is a vector x = {xi}Ii=0. Each element of the
vector falls within [0, 1], and

∑I
i=0 xi = 1, which can be directly

interpreted as the probability of a speaker being in a particular
class. Hence, we refer to the label vector as a “label distribution”.
Considering a ground-truth scaling factor sx, it can be associated
with the ζ-th class, where ζ = sx × I . It is crucial to emphasize
that both sx and ζ are real numbers. The ULD vectorx is defined

as follows:

xi =

⎧⎨
⎩
1− deci(ζ), if i = int(ζ)
deci(ζ), if i = int(ζ) + 1
0, otherwise

, ∀i = 0, . . . , I

(8)
where deci(·) represents the extraction of the decimal portion,
while int(·) represents the extraction of the integer portion.

Equation (8) can be intuitively understood as indicating that
the speaker falls between two adjacent integer classes. For
example, as shown in Fig. 2, the speaker is situated between
the 4-th and 5-th classes of x-axis, and the values of the ULD
can be interpreted as the probabilities of the speaker being in
these two classes.

The ULD can be regarded as a smoothed and refined version
of one-hot encoding [36]. Consequently, the ULD codes can
directly leverage the benefits of one-hot codes for supervising the
training of classification models. It can also be viewed as a form
of regression. When setting I to 1, indicating binary classifica-
tion using ULD, one can observe that this fundamentally aligns
with the approach in [21], where regression is directly employed
to estimate the scaling factors. Furthermore, increasing the
number of output neurons can be seen as employing additional
neurons to enhance this specific regression representation.

2) Soft Decoding in the Inference Stage: We use multi-
ple adjacent classes for a weighted soft decoding of the
speaker location ŝx from x̂. We denote the peak class as k̂ =
argmaxi{x̂}Ii=0. The estimation ŝx is a weighted summation
of the adjacent classes as follows:

ŝx =

∑
i={k̂−1,k̂,k̂+1} x̂i × i/I∑

i={k̂−1,k̂,k̂+1} x̂i
(9)

Specifically, in cases of out-of-bounds situations, i.e., when
i < 0 or i > I , we set x̂i = 0. Note that theoretically using two
adjacent classes is sufficient. However, the empirical experi-
ments on DOA estimation, as demonstrated in [36], indicate that
employing three adjacent classes with the weighted decoding
almost always yields more accurate results.

B. Grid Partitioning With ULD (Grid-U)

In this section, we apply the ULD encoding-decoding strategy
to the grid-partitioning-based SL. The method is denoted as
Grid-U.

1) Soft Encoding: In the following, we present the 3D encod-
ing method, with the 2D encoding following similar yet simpler
rules.

We use the ULD soft encoding to encode each axis of a 3D
location (x, y, z), which derives three tensors: x is a tensor of
dimensions (I + 1)× 1× 1, y is a tensor of dimensions 1×
(I + 1)× 1, and z is a tensor of dimensions 1× 1× (I + 1).
A 1D label distribution can be viewed as a marginal probabil-
ity distribution, whereas a multi-dimensional label distribution
can be regarded as a joint probability distribution. Given that
x, y, and z dimensions are mutually orthogonal, their cor-
responding marginal distributions are mutually independent.
This property derives the joint distribution as a multiplication
of the marginal distributions. Subsequently, the three tensors
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are multiplied element-wisely, resulting in a 3D-ULD tensor
ρ = {ρ(i,j,k)}(I,I,I)(i,j,k)=(0,0,0):

ρ = x× y × z (10)

Finally, we take ρ as the training objective of Grid-U.
2) Soft Decoding: In the test stage, suppose ρ̂ is an estimate

of ρ made by DNN, then we can obtain the estimates of x, y,
and z by:

x̂ =

I∑
j=0

I∑
k=0

ρ̂, ŷ =

I∑
i=0

I∑
k=0

ρ̂, ẑ =

I∑
i=0

I∑
j=0

ρ̂ (11)

After obtaining x̂, ŷ, and ẑ, we can employ (9) to compute the
refined scaling factor (ŝx, ŝy, ŝz).

C. Axis Partitioning With ULD (Axis-U)

In this section, we apply the ULD encoding-decoding strategy
to the axis-partitioning-based SL. The method is denoted as
Axis-U. The fundamental difference between Grid-U and Axis-U
lies in that, the Grid-U estimates the joint distribution first and
then computing the marginal distributions, while Axis-U directly
estimates the marginal distributions.

1) Soft Encoding: We employ the ULD to encode each axis
of a 3D location (x, y, z), resulting in three tensors denoted as
x, y, and z, each with a shape of 1× (I + 1). Concatenating
them along the first dimension yields ρ = {ρ(d,i)}(3,I)(d,i)=(1,0):

ρ = Concat(x,y, z) (12)

Finally, we take ρ as the training objective of Axis-U.
2) Soft Decoding: In the test stage, we can obtain the esti-

mates of x, y, and z by:

x̂ = ρ̂1, ŷ = ρ̂2, ẑ = ρ̂3 (13)

After obtaining x̂, ŷ, and ẑ, we can employ (9) to compute the
refined scaling factor (ŝx, ŝy, ŝz).

VI. DATA AUGMENTATION

DNN-based SL is easily overfitting, even on simulated sce-
narios. This section presents three data augmentation methods,
including coordinate transformation, stochastic node selection,
and mixed training, to alleviate the overfitting.

It is worth emphasizing that the coordinate transformation
and stochastic node selection are applied to each sample in
every epoch, which improves the generalization ability without
increasing the computational or storage costs.

A. Coordinate Transformation

As mentioned in Section II, establishing a coordinate system
requires the coordinate origin to be at one corner, and the
coordinate axes to align with the corresponding edges of the
walls.

The available coordinate transformations are as follows: (i)
Any corner of the room can be chosen as the coordinate origin,
leading to 4 possible coordinate origins in a 2D SL scenario and
8 in a 3D SL scenario. (ii) After selecting an origin, we also can

Fig. 6. A demonstration of Coordinate Transformation and Stochastic Node
Selection.

have different combinations of coordinate axes. For a 2D SL
scenario, there are 2 possible combinations: {(x, y), (y, x)}.
For a 3D SL scenario, there are 6 possible combinations:
{(x, y, z), (x, z, y), (y, x, z), (y, z, x), (z, x, y), (z, y, x)}.
Eventually, for a single sample, there can be 8 possible
alternatives in a 2D scene and 48 possible alternatives in a 3D
scene. For instance, although both of the examples in Figs. 2
and 6 have selected the lower-left corner as the coordinate
origin, the combination of the coordinate axes in Fig. 2 is (x, y),
while it is (y, x) in Fig. 6.

B. Stochastic Node Selection

As illustrated in Fig. 6, given a large ad-hoc array, we can
create many ad-hoc arrays by randomly selecting subsets of
nodes of the array. If the original array has M nodes and we
randomly choose M ′ nodes (M ≥ M ′), there are CM ′

M different
array configurations possible. This approach, named stochastic
node selection, allows for a vast number of array configurations.
Note that this approach is solely employed during the training
phase.

It is easily implemented, and has the following three advan-
tages. (i) For each utterance in a training epoch, only a subset
of nodes is chosen to train the DNN, which clearly reduces
computational costs and time. (ii) It allows the DNN to see
as many different array configurations as possible, which pro-
vides significant performance improvement. The reason for this
advantage is that changing the microphone array configuration
implies a variation of spatial features which is very important for
the generalization of the DNN-based SL. (iii) It can also be seen
as a form of dropout regularization [45] applied to microphone
nodes, which improves the generalization ability of DNN.

C. Mixed Training

Many existing speech processing techniques on ad-hoc mi-
crophone arrays follow a common workflow. It first pretrain a
DNN on a simulated ad-hoc dataset, and then fine-tune the DNN
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with a real-world dataset. In practice, we have observed that
applying this method to SL yields catastrophic overfitting. The
main reason for the failure is that the aforementioned coordinate
transformations and stochastic node selection do not produce
enough random number of transformations to the real-world
data.

To address this issue, we propose a mixed training strategy,
which uses the real-world data and simulated data together
for the fine-tuning. Moreover, we propose a mixed validation
strategy. It merges the simulated validation set with the real
validation set into a large mixed validation set, which avoids
selecting a model that is biased towards few speaker positions
in the real-world validation set.

VII. EXPERIMENTAL SETUP

A. Datasets

We have conducted experiments on both simulated and real-
world datasets.

1) Simulated Data: Our simulated dataset contains 2D and
3D SL scenarios, whereas the real-world dataset focuses on
the 2D SL scenario. The source speech data was from the
LibriSpeech corpus [46]. We used the ‘train-clean-360’, ‘dev-
clean’, and ‘test-clean’ subsets of Librispeech, which contain
921, 40, and 40 speakers, respectively. We adopted Pyrooma-
coustics [47] to generate room impulse responses. For each
individual utterance, we simulated a room with a random size
and extracted a 2-second portion of a clean speech. Each speech
segment was then recorded using an ad-hoc microphone array
consisting of 20 nodes, each equipped with a single microphone.
The reverberation time T 60 was randomly chosen between
[0.2, 1.2] s.

We further added noise into the reverberant speech. The addi-
tive noise was chosen from an extensive repository comprising
126 hours of diverse noise types. To control the signal-to-noise
ratio (SNR), we first determine the average energy of the direct
sound across all microphone channels. This average energy is
then used as a reference to control the noise energy. By default,
we added the same noise to each microphone. When specified,
point source noise will be used. The SNR for the training set
was randomly drawn from a range of [0, 50] dB. The SNR
for the validation and test sets was drawn randomly from a
range of [10, 20] dB. Note that the additive noise of the training,
validation, and testing sets do not overlap.

We generates five simulated datasets, denoted as “2D-simu1”,
“2D-simu2”, “2D-simu3”, “3D-simu1”, and “3D-simu2”, re-
spectively, where the terms “2D” and “3D” denote the 2D and 3D
SL scenarios respectively, and the terms “simu1”, “simu2”, and
“simu3” correspond to scenarios involving one, two, and three
speakers respectively. For each dataset, the utterance number of
the training, validation, and testing subsets are 18000, 1800, and
1800, respectively.

For the 2D datasets, the length and width of each room were
randomly selected from a range of [4,10]m, while the height of
the room was fixed at 4.2 m. The heights of the speakers were
fixed at 0.95 m. The heights of the microphones was fixed at
0.9 m. To prevent the microphones or speakers too close to each

other, we first partitioned a room into 16× 16 grids and then
placed the microphones and speakers randomly into the grids,
with each grid containing at most one microphone or speaker,
where the specific locations of the microphone or speaker in the
grid was also random.

For the 3D datasets, we inherited most of the configurations
from the 2D datasets. The difference between the 3D and 2D
datasets was that the room height of the 3D datasets was ran-
domized between [4,10]m, and the number of grids was set to
16× 16× 16. We randomly placed microphones and speakers
at all coordinates.

2) Real-World Data: The real-world data was constructed
from the Libri-adhoc40 corpus [37], which incorporates 40
microphone nodes. The training set, validation set, and test set
are situated at distinct speaker locations, with 9, 4, and 4 different
positions, respectively.

We formulated a single-speaker 2D SL dataset from Libri-
adhoc40, denoted as “2D-real1”, as well as a two-speaker 2D
SL dataset, denoted as “2D-real2”. To generate multi-speaker
datasets, we simply add the speech signals from different speak-
ers at different locations together. For the 2D-real1 dataset, the
training, validation, and test sets contain 18000, 1800, and 2468
utterances respectively. For the 2D-real2 dataset, the training,
validation, and testing sets contain 18000, 1800, and 1800 ut-
terances, respectively. Each utterance of Libri-adhoc40 was cut
into 2-second segments. The geometry of the real-world room
is irregular but can be approximated as a rectangular box with
dimensions of approximately 9.8× 10.3× 4.2 m. The room’s
T60 is approximately 0.9 s, with negligible presence of additive
noise.

B. Parameter Settings

1) Acoustic Features: The sampling rate is 16 kHz. The
window length is 512, with a hop length of 256. Short-Term
Fourier Transform (STFT) features were extracted from 512 FFT
with Hanning window. The real and imaginary components of
the STFT were concatenated along the frequency dimension as
the input of neural networks.

2) Position Codes: In this paper, the input representation
of the microphones is always the same shape as the output
representation. If employing one-hot encoding, each axis of
a room is divided into I classes. Consequently, when using
grid partitioning, the dimension of the position code, denoted
as parameter C, was assigned as C = I2 for the 2D SL and
C = I3 for the 3D SL. When using axis partitioning, these values
become C = 2I and C = 3I , respectively.

In contrast, when using ULD, each axis of a room is divided
into I + 1 classes to cover boundaries. For the 2D SL with grid
partitioning, C = (I + 1)2. Similar adjustments apply in other
cases.

3) Neural Networks: Two backbone neural networks were
used. The first one is named the End-to-End Sound Source
Localization (E2ESL) model [32]. It was applied to both the
single- and multi-speaker localization using MLC. The network
structure of E2ESL is detailed in Table I. Its workflow can be
briefly described as follows: It contains a STFT encoder and a
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TABLE I
ARCHITECTURE OF THE E2ESL / E2ESL-SPLIT

position encoder. The STFT encoder is used to transform the
signals of an utterance collected by the microphone nodes into
spatial-temporal embedding features ofM × T ×D1, whereM
signifies the number of microphone nodes,T denotes the number
of frames, and D1 represents the dimension of the embedding
feature at each frame. Likewise, the position encoder is used
to convert the position codes of the microphone nodes into
spatial-temporal embedding features characterized by dimen-
sions M × T ×D2, where D2 denotes the dimension of the
embedding feature at each frame. In this paper,D1 = D2 = 256.
Then, the two spatial-temporal embedding features were con-
catenated into a tensor of size M × T × (D1 +D2). Then, two
spatial layers perform transformations on the spatial dimension.
A fusion layer combines the channels into a single one, as in [32],
allowing the model to accommodate different numbers of mi-
crophone nodes between training and testing. A temporal layer
processes the temporal dimension. The self-attention module
in the above three kinds of layers is a 4-head attention. The
high-level features produced by the above layers are then passed
through fully connected layers to obtain predicted distributions.

The second backbone neural network is named E2ESL-Split.
It has two differences from E2ESL. First, E2ESL-Split method
is only applicable to multi-speaker localization tasks, hence
necessitating the PIT for training. Second, following the ap-
proach in [43], it replaced the second-to-last layer of E2ESL
by BiLSTM layers for separating the embedding features of
multiple speakers.

4) Training and Evaluation Details: For all simulation ex-
periments, we used AdamW optimizer [48] with a batch size
of 16 and a maximum of 50 training epochs. The learning rate
was initialized at 10−4. If the validation loss did not decrease for
3 consecutive epochs, it was reduced to 10−5. The best models
obtained on the simulation dataset were then used for fine-tuning
on the mixed dataset. The fine-tuning process involved 10 epochs
with a learning rate of 10−5.

TABLE II
DESCRIPTION OF THE COMPARISON METHODS, WHERE “�” IMPLIES THAT THE

OPTION IS USED

During the training phase, for all datasets, we randomly
selected 10 nodes and performed a coordinate transformation
for each utterance in each epoch. During the validation and test
phases, we used 20 nodes. Therefore, for the simulated datasets,
all 20 nodes were selected. For the Libri-adhoc40 dataset, we
randomly selected 20 nodes and performed a coordinate trans-
formation for each utterance, due to the fixed microphone array
configuration and limited speaker position options. The random
seed was fixed to ensure fairness.

In order to obtain the desired predicted distributions, suitable
activation and loss functions at the output layer of the backbone
networks should be designed. Following [1], when performing
MLC, the activation of the output layer is sigmoid, and the loss
function is Binary Cross Entropy (BCE). In other cases, the
activation of the output layer is softmax, and the loss function
is Cross Entropy (CE). For axis partitioning, the loss of each
axis is computed separately, and the total loss is the summation
of them. For MLC, the mixed label code for a single sample is
obtained by summing the individual label codes of each speaker.
Subsequently, for each element of the mixed label code, we
impose an upper limit of 1.

5) Comparison Methods: The comparison methods are sum-
marized in Table II. From the table, we can see that the com-
parison methods are various combinations of the technologies
referred in this paper.

6) Evaluation Metrics: Suppose a dataset has N total test
speakers. Then, a metric is the classification accuracy (ACC):

ACC(%) =
N acc

N total
× 100 (14)

where N acc represents the number of speakers whose predicted
location is correctly classified into the ground-truth class. When
applying ACC to evaluate axis partitioning methods, the ACC
for each axis was first evaluated independently. Then, the ACC
values across all axes are averaged to determine the overall ACC.
A lower ACC suggests that the model is more challenging to
train, and if ACC becomes too low, it indicates non-convergence.
Therefore, the aforementioned definition of ACC is mainly used
to compare the convergence difficulty of classification models,
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TABLE III
RESULTS ON THE SINGLE-SPEAKER TWO-DIMENSIONAL SIMULATED DATA

“2D-SIMU1”

and is therefore not suitable for comparing the localization
accuracy of models.

Another evaluation metric for SL is the mean absolute error
(MAE) between the predicted location and the ground-truth
location in the Euclidean space:

MAE(m) =
1

N total

N total∑
n=1

||pn − p̂n||2 (15)

where || · ||2 denotes the Euclidean norm. When there are multi-
ple speakers, there are many possible combinations between the
multiple predicted positions and ground-truth positions, each of
which yields a MAE. We selected the combination that results
in the minimum MAE as the best one.

We use ‘QE’ to denote quantization error, which is the MAE
incurred even when achieving 100% classification accuracy
using the one-hot paradigm. The symbol ‘/’ indicates that the
model training fails to converge.

VIII. RESULTS ON SIMULATED DATA

A. Results on Single-Speaker Localization

The main purposes of the experiments on the single-speaker
localization are to show (i) the effectiveness of the axis-
partitioning-based methods in dealing with the curse of dimen-
sionality, and (ii) the effectiveness of ULD in overcoming the
quantization errors caused by the one-hot paradigm.

1) Two-Dimensional Localization: In Table III, we can ob-
serve that the quantization error is clearly inversely proportional
to I , which aligns with our theoretical expectations. This serves
as the lower bound for the methods of both ‘Grid’ and ‘Axis’.
When I is relatively small, DNNs can easily achieve high ACC,
and the MAE for both ‘Grid’ and ‘Axis’ closely approaches
QE. However, as I gradually increases, the ACC decreases, and
learning errors gradually dominate the total error over quan-
tization errors. Given the same I , axis partitioning generally
achieves higher ACC than grid partitioning because the number
of classes is much smaller. When I = 16, the ACC for ‘Grid’
is already quite low; when I is further increased to 32 which
corresponds to 1024 classes, its training no longer converges.
On the other side, even when I = 64, ‘Axis’ with 128 classes
can still converge to achieve decent results. This indicates that

TABLE IV
RESULTS ON THE SINGLE-SPEAKER THREE-DIMENSIONAL SIMULATED DATA

“3D-SIMU1”

‘Axis’ exhibits better trainability than ‘Grid’. After integrating
with ULD, ‘Grid-U’ converges at I = 32. This phenomenon
may be attributed to ULD’s ability to eliminate quantization
errors, thereby making the input position information accurate.
The best MAE was achieved by ‘Axis-U’, which was 44.94%
relatively lower than the original ‘Grid’.

2) Three-Dimensional Localization: A more challenging
scenario is the 3D SL. The rooms are larger without height
restrictions, which significantly increases the occurrence like-
lihood of far-field scenarios. The sound sources are not confined
to a plane, leading to a larger range of error fluctuations.

Table IV show that the models of the grid-partitioning-based
methods are difficult to be trained successfully due to the curse
of dimensionality. Even if they achieve convergence, they yield
very low accuracy; while the axis-partitioning-based methods do
not have such difficulty, which demonstrates clearly the advan-
tages over the grid-partitioning-based methods. Furthermore,
when ULD is applied, ‘Axis-U’ reduces MAE by 67.70% over
‘Grid’.

B. Results on Multi-Speaker Localization

The main purposes of the experiments on the multi-speaker
localization are mainly to show the advantage of separator-based
SL over MLC-based SL.

1) Two-Dimensional Localization: Table V lists the compar-
ison result on the 2D two-speaker localization. From the table,
we see that the proposed separator-based methods outperform
the MLC-based methods. For the separator-based methods, it is
apparent that ‘Grid-S’ and ‘Grid-U-S’ cannot be trained success-
fully when I becomes large, while ‘Axis-S’ and ‘Axis-U-S’ still
maintain their trainability. When I = 1, ‘Axis-U-S’ essentially
performs like a regression [21]. Moreover, it exhibits lower
performance than the typical classification ‘Grid-S’ when I = 8.
A similar phenomenon has been observed in [35] where the
authors claimed that classification is more robust than regres-
sion for SL. From I = 1 to I = 16, ‘Axis-U-S’ achieves large
improvement, indicating that ULD can inherit the robustness of
the classification-based SL. To summarize, with the support of
ULD, ‘Axis-U-S’ reduces MAE by 41.70% over ‘Grid-S’, and
53.32% over the regression-based SL.
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TABLE V
RESULTS ON THE TWO-SPEAKER TWO-DIMENSIONAL SIMULATED DATA

“2D-SIMU2”

TABLE VI
RESULTS ON THE THREE-SPEAKER TWO-DIMENSIONAL SIMULATED DATA

“2D-SIMU3”

Table VI lists the comparison result on the 2D three-speaker
localization problem. From the result, we can see that increasing
extra speakers affects the localization performance significantly.
However, the proposed technique still achieves the best perfor-
mance. For example, the MAE of ‘Axis-U-S’ is 38.76% lower
than that of ‘Grid-S’.

2) Three-Dimensional Localization: Table VII lists the com-
parison results on the 3D SL scenario. From the table, it is clear
that most of our observations are similar to those in the other
scenarios. Specifically, the axis-partitioning-based methods con-
sistently outperforms the grid-partitioning-based methods. ULD
outperforms the one-hot strategy. The separator-based methods
outperform the MLC-based methods. ‘Axis-U-S’ reduces MAE
by 40.03% over ‘Grid-S’. Although ‘Grid-U-S’ achieves the best
performance, we insistently recommend ‘Axis-U-S’. The reason
is as follows: as illustrated in Table VIII, the model size of grid
partitioning grows dramatically with the increase of I , while

TABLE VII
RESULTS ON THE TWO-SPEAKER THREE-DIMENSIONAL SIMULATED DATA

“3D-SIMU2”

TABLE VIII
THE INFLUENCE OF I ON THE NUMBER OF MODEL PARAMETERS (IN

MILLIONS), WHERE THE MODELS WERE TRAINED ON THE SIMULATED DATA

“3D-SIMU2”

the model size of axis partitioning grows linearly with I which
facilitates its practical use.

C. Empirical Study on Data Augmentation

Fig. 7 shows the effects of the components of the novel
data augmentation on performance. Specifically, Fig. 7(a) illus-
trates that without employing data augmentation, the training
loss decreases rapidly, leading to early overfitting. In contrast,
Fig. 7(b) incorporates coordinate transformation. It effectively
augmented the dataset, which significantly degrades the val-
idation loss. An interesting phenomenon in Fig. 7(c) is that
the validation loss is even lower than the training loss. This is
because that the training data which consists of 10 ad-hoc nodes
per utterance is more challenging than the validation data which
contains 20 ad-hoc nodes. As shown in Fig. 7(d), integrating the
coordinate transformation and stochastic node selection together
achieves a lower validation loss. Table IX lists the effects of the
proposed CA data augmentation and its components on the test
set. From the table, we see that the components, i.e. CT and
SNS, are effective, while CA outperforms the method without
augmentation by a relative MAE reduction of 33.4%.

D. Empirical Study on Different Noises

We studied the effectiveness of various methods in different
noisy environments. First, we duplicated ‘2D-simu1’ and added
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Fig. 7. Ablation study of the data augmentation methods on the 2D-simu1 dataset, where ‘Axis-U’ with I = 16 was used.

TABLE IX
THE RESULTS OF DATA AUGMENTATIONS ON THE 2D-SIMU1 DATASET, WHERE

‘AXIS-U’ WITH I = 16 WAS USED

TABLE X
RESULTS ON DIFFERENT SNR AND NOISE TYPES, WHERE EACH METHOD

USING THE OPTIMAL I

diffuse noise to one copy and point source noise to the other. The
training sets from these two noise environments were combined
into a large training set, and the validation sets were similarly
merged. These sets were used to train models that generalize
across different noise types. Each utterance in the training and
validation sets had an SNR randomly chosen from [0, 20] dB.
The test set’s SNR was controlled at {0, 10, 20} dB.

Table X presents the comparison results on diffuse noise and
point source noise respectively. It is evident that point source
noise is more challenging than diffuse noise. The inclusion of
point source noise slow the convergence of the ‘Grid’, resulting
in poor performance. However, the proposed axis-partitioning
and ULD methods demonstrate their relative effectiveness re-
spectively. The combined ‘Axis-U’ model performs best, achiev-
ing a small error of 0.244 m even in a 0 dB point source noise
environment.

IX. RESULTS ON REAL-WORLD DATA

A. Main Results

Tables XI and XII show the performance of the comparison
methods on the single- and two-speaker real-world data respec-
tively. We see similar experimental phenomena as those on the
simulated data. Specifically, the performance of the methods
based on one-hot paradigm is lower-bounded by QE. While

TABLE XI
RESULTS ON THE SINGLE-SPEAKER TWO-DIMENSIONAL REAL-WORLD DATA

‘2D-REAL1’

TABLE XII
RESULTS ON THE TWO-SPEAKER TWO-DIMENSIONAL REAL-WORLD DATA

‘2D-REAL2’

the ULD-based methods significantly breaks such limitation
when I is small. Axis-partitioning-based methods continue to
outperform their grid partitioning counterparts in most cases.
We also found that the results in Table XI generally are bet-
ter than those in Table III, even though Libri-adhoc40 has a
large room with high reverberation. This phenomenon may be
caused by that the simulated dataset includes environmental
noise, whereas Libri-adhoc40 includes little additive noise. In
Table XII, although ‘Grid-U-S’ slightly outperforms ‘Axis-U-S’,
we still recommend ‘Axis-U-S’, due to its low computational
complexity. To summarize, ‘Axis-U’ outperforms ‘Grid’ by a
relative MAE reduction of 52.54% on 2D-real1, and ‘Axis-U-S’
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TABLE XIII
THE RESULTS OF DATA AUGMENTATIONS ON THE REAL DATASET, WHERE

‘AXIS-U’ WITH I = 16 WAS USED AS THE SL MODEL

outperforms ‘Grid-S’ by a relative MAE reduction of 51.99%
on 2D-real1.

B. Empirical Study on Data Augmentation

Table XIII shows the effect of the mixed-training strategy
in the real-world scenario. From the table, we can see that
directly applying the pre-trained model to the real dataset does
not perform well. Using the real-world data to fine tune the
pre-trained model still yields unsatisfactory results. In contrast,
fine-tuning the pre-trained model with a combination of both the
simulated and real-world datasets alleviates the issue of sample
imbalance, resulting in a relative MAE reduction of 68.95% over
the pre-trained model.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed several algorithms for the
multi-dimensional speaker localization. Notably, we introduced
axis partitioning to address the curse of dimensionality. Addi-
tionally, we suggested using a separator to resolve the permuta-
tion ambiguity problem inherent in axis partitioning when han-
dling multi-speaker localization tasks. Furthermore, we present a
comprehensive strategy of unbiased label distribution to mitigate
quantization errors. At last, we proposed several data augmen-
tation methods, including coordinate transformation, stochastic
node selection, and mixed training, to mitigate the overfitting.
We have conducted extensive experiments on both simulated
and real-world data, and the results show the effectiveness of
the proposed algorithms.

The research on end-to-end SL with ad-hoc arrays is still
at the beginning, with numerous open problems. We highlight
several pressing topics as follows: (i) Developing methods to
handle various types of sound sources, including moving sources
and interference beyond speakers. (ii) Investigating whether
enhancing the separator, potentially through more sophisticated
temporal processing and fusion techniques, leads to performance
gains and cost savings. (iii) Minimizing reliance on a priori infor-
mation about room dimensions and microphone positions, and
studying input representations for microphone positions. (iv)
Combining neural networks with array processing techniques,
such as designing an effective node selection algorithm for
ad-hoc microphone arrays. Addressing these challenges would
markedly advance the field, not only enhancing existing systems
but also opening new avenues for research and applications.
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[1] P.-A. Grumiaux, S. Kitić, L. Girin, and A. Guérin, “A survey of sound
source localization with deep learning methods,” J. Acoustical Soc. Amer.,
vol. 152, no. 1, pp. 107–151, 2022.

[2] A. S. Subramanian et al., “Directional ASR: A new paradigm for E2E
multi-speaker speech recognition with source localization,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2021, pp. 8433–8437.

[3] Z.-Q. Wang and D. Wang, “Localization based sequential grouping for
continuous speech separation,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2022, pp. 281–285.

[4] M. Ge, C. Xu, L. Wang, E. S. Chng, J. Dang, and H. Li, “L-SpEx: Localized
target speaker extraction,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2022, pp. 7287–7291.

[5] H. Taherian and D. Wang, “Multi-channel conversational speaker sep-
aration via neural diarization,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 32, pp. 2467–2476, 2024.

[6] T. Gburrek, J. Schmalenstroeer, and R. Haeb-Umbach, “Spatial diarization
for meeting transcription with ad-hoc acoustic sensor networks,” in Proc.
IEEE 57th Asilomar Conf. Signals, Syst., Comput., 2023, pp. 1399–1403.

[7] C. Knapp and G. Carter, “The generalized correlation method for esti-
mation of time delay,” IEEE Trans. Acoustics, Speech, Signal Process.,
vol. ASSP-24, no. 4, pp. 320–327, Aug. 1976.

[8] R. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. TAP-34, no. 3, pp. 276–280,
Mar. 1986.

[9] J. Smith and J. Abel, “The spherical interpolation method of source
localization,” IEEE J. Ocean. Eng., vol. 12, no. 1, pp. 246–252, Jan. 1987.

[10] P. Stoica and K. C. Sharman, “Maximum likelihood methods for direction-
of-arrival estimation,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 38, no. 7, pp. 1132–1143, Jul. 1990.

[11] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic
location,” IEEE Trans. Signal Process., vol. 42, no. 8, pp. 1905–1915,
Aug. 1994.

[12] J. H. DiBiase, “A high-accuracy, low-latency technique for talker local-
ization in reverberant environments using microphone arrays,” Brown
University, 2000.

[13] J. Scheuing and B. Yang, “Correlation-based TDOA-estimation for multi-
ple sources in reverberant environments,” Speech Audio Process. Adverse
Environments, pp. 381–416, 2008.

[14] R. Amiri, F. Behnia, and A. Noroozi, “An efficient estimator for TDOA-
based source localization with minimum number of sensors,” IEEE Com-
mun. Lett., vol. 22, no. 12, pp. 2499–2502, Dec. 2018.

[15] S. Chakrabarty and E. A. P. Habets, “Multi-speaker DOA estimation using
deep convolutional networks trained with noise signals,” IEEE J. Sel.
Topics Signal Process., vol. 13, no. 1, pp. 8–21, Mar. 2019.

[16] W. Zhang, Y. Zhou, and Y. Qian, “Robust DOA estimation based on
convolutional neural network and time-frequency masking,” in Proc. Annu.
Conf. Int. Speech Commun. Assoc., 2019, pp. 2703–2707.

[17] Y. Fu et al., “Iterative sound source localization for unknown number of
sources,” in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2022, pp. 896–
900.

[18] Q. Hu, N. Ma, and G. J. Brown, “Robust binaural sound localisation
with temporal attention,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2023, pp. 1–5.

[19] U. Kowalk, S. Doclo, and J. Bitzer, “Geometry-aware DOA estimation
using a deep neural network with mixed-data input features,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2023, pp. 1–5.

[20] P. Cooreman, A. Bohlender, and N. Madhu, “CRNN-based multi-DOA
estimator: Comparing classification and regression,” in Proc. IEEE Speech
Commun.; 15th ITG Conf., 2023, pp. 156–160.

[21] F. Vesperini, P. Vecchiotti, E. Principi, S. Squartini, and F. Piazza, “A
neural network based algorithm for speaker localization in a multi-room
environment,” in Proc. IEEE 26th Int. Workshop Mach. Learn. Signal
Process., 2016, pp. 1–6.

[22] P. Vecchiotti, G. Pepe, E. Principi, and S. Squartini, “Detection of activity
and position of speakers by using deep neural networks and acoustic data
augmentation,” Expert Syst. with Appl., vol. 134, pp. 53–65, 2019.

[23] G. Le Moing et al., “Learning multiple sound source 2D localization,” in
Proc. IEEE 21st Int. Workshop Multimedia Signal Process., 2019, pp. 1–6.

[24] D. Zhang, J. Chen, J. Bai, M. S. Ayub, M. Wang, and Q. Yan, “Multiple
sound sources localization using sub-band spatial features and attention
mechanism,” Available at SSRN 4618444.

[25] Y. Sun, J. Chen, C. Yuen, and S. Rahardja, “Indoor sound source localiza-
tion with probabilistic neural network,” IEEE Trans. Ind. Electron., vol. 65,
no. 8, pp. 6403–6413, Aug. 2018.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on September 21,2024 at 01:48:23 UTC from IEEE Xplore.  Restrictions apply. 



FENG et al.: LEARNING MULTI-DIMENSIONAL SPEAKER LOCALIZATION 4025

[26] J. Yan, W. Zhao, Y. I. Wu, and Y. Zhou, “Indoor sound source localization
under reverberation by extracting the features of sample covariance,” Appl.
Acoust., vol. 210, 2023, Art. no. 109453.

[27] S. Kindt, A. Bohlender, and N. Madhu, “2D acoustic source localisation
using decentralised deep neural networks on distributed microphone ar-
rays,” in Proc. IEEE Speech Commun.; 14th ITG Conf., 2021, pp. 1–5.

[28] X.-L. Zhang, “Deep ad-hoc beamforming,” Comput. Speech Lang., vol. 68,
2021, Art. no. 101201.

[29] T. Gburrek, J. Schmalenstroeer, and R. Haeb-Umbach, “On synchroniza-
tion of wireless acoustic sensor networks in the presence of time-varying
sampling rate offsets and speaker changes,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2022, pp. 916–920.

[30] A. Chinaev, N. Knaepper, and G. Enzner, “Long-term synchronization
of wireless acoustic sensor networks with nonpersistent acoustic activity
using coherence state,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2023, pp. 1–5.

[31] S. Liu, Y. Gong, and X.-L. Zhang, “Deep learning based two-dimensional
speaker localization with large ad-hoc microphone arrays,” 2022,
arXiv:2210.10265.

[32] Y. Gong, S. Liu, and X.-L. Zhang, “End-to-end two-dimensional sound
source localization with ad-hoc microphone arrays,” in Proc. IEEE Asia-
Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., 2022, pp. 1944–
1949.

[33] L. Feng, Y. Gong, and X.-L. Zhang, “Soft label coding for end-to-end
sound source localization with ad-hoc microphone arrays,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2023, pp. 1–5.

[34] Z.-Q. Wang, X. Zhang, and D. Wang, “Robust TDOA estimation based on
time-frequency masking and deep neural networks,” in Proc. Annu. Conf.
Int. Speech Commun. Assoc., 2018, pp. 322–326.

[35] L. Perotin, A. Défossez, E. Vincent, R. Serizel, and A. Guérin, “Regression
versus classification for neural network based audio source localization,” in
Proc. IEEE Workshop Appl. Signal Process. Audio Acoust., 2019, pp. 343–
347.

[36] L. Feng, X.-L. Zhang, and X. Li, “Eliminating quantization errors in
classification-based sound source localization,” Neural Netw., vol. 106679,
pp. 1-13, 2024.

[37] S. Guan et al., “Libri-adhoc40: A dataset collected from synchronized
ad-hoc microphone arrays,” in Proc. IEEE Asia-Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf., 2021, pp. 1116–1120.

[38] J. Chen and X.-L. Zhang, “Scaling sparsemax based channel selection for
speech recognition with ad-hoc microphone arrays,” in Proc. Annu. Conf.
Int. Speech Commun. Assoc., 2021, pp. 291–295.

[39] C. Liang, Y. Chen, J. Yao, and X.-L. Zhang, “Multi-channel far-field
speaker verification with large-scale ad-hoc microphone arrays,” in Proc.
Annu. Conf. Int. Speech Commun. Assoc., 2022, pp. 3679–3683.

[40] Y. Chen, C. Liang, and X.-L. Zhang, “Spatial-temporal graph based
multi-channel speaker verification with ad-hoc microphone arrays,” 2023,
arXiv:2307.01386.

[41] Z. Yang, S. Guan, and X.-L. Zhang, “Deep ad-hoc beamforming based
on speaker extraction for target-dependent speech separation,” Speech
Commun., vol. 140, pp. 87–97, 2022.

[42] W. He, P. Motlicek, and J.-M. Odobez, “Deep neural networks for mul-
tiple speaker detection and localization,” in Proc. IEEE Int. Conf. Robot.
Automat., 2018, pp. 74–79.

[43] A. S. Subramanian, C. Weng, S. Watanabe, M. Yu, and D. Yu, “Deep
learning based multi-source localization with source splitting and its
effectiveness in multi-talker speech recognition,” Comput. Speech Lang.,
vol. 75, 2022, Art. no. 101360.

[44] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation invariant
training of deep models for speaker-independent multi-talker speech sep-
aration,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2017,
pp. 241–245.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[46] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2015, pp. 5206–5210.

[47] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: A python
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